UNIVERSITE DE LIEGE
Faculté des Sciences Appliquées

Partial-Order Methods

for the Verification of Concurrent Systems

An Approach to the State-FExplosion Problem

These présentée par
Patrice Godefroid

en vue de l'obtention du grade

de Docteur en Sciences Appliquées

Année Académique 1994-1995

www.manharaa.com

www.manharaa.com

o AJLb

Abstract

State-space exploration techniques are increasingly being used for debugging and prov-
ing correct finite-state concurrent reactive systems. The reason for this success is mainly
the simplicity of these techniques. Indeed, they are easy to understand, easy to im-
plement and, last but not least, easy to use: they are fully automatic. Moreover, the
range of properties that they can verify has been substantially broadened thanks to the

development of model-checking methods for various temporal logics.

The main limit of state-space exploration verification techniques is the often exces-
sive size of the state space due, among other causes, to the modeling of concurrency
by interleaving. However, exploring all interleavings of concurrent events is not a priori
necessary for verification: interleavings corresponding to the same concurrent execution
contain related information. One can thus hope to be able to verify properties of a concur-
rent system without exploring all interleavings of its concurrent executions. This thesis

presents a collection of methods, called partial-order methods, that make this possible.

The intuition behind partial-order methods is that concurrent executions are really
partial orders and that concurrent events should be left unordered since the order of their
occurrence is irrelevant. However, rather than choosing to work with direct representa-
tions of partial orders, the methods we develop keep to an interleaving representation
of partial orders, but attempt to limit the expansion of each partial-order computation
to just one of its interleavings, instead of all of them. More precisely, given a prop-
erty, partial-order methods explore only a reduced part of the global state-space that is
sufficient for checking the given property. In the thesis, three types of properties are con-
sidered: absence of deadlocks, safety properties, and properties expressed by linear-time
temporal-logic formulas.

The techniques and algorithms we describe have been implemented in an add-on pack-
age for the protocol verification system SPIN. This Partial-Order Package has been tested
on numerous examples, including several industrial-size communication protocols. When
the coupling between the processes is very tight, partial-order methods yield no reduc-
tion, and the partial-order search becomes equivalent to a classical exhaustive search.
When the coupling between the processes is very loose, the reduction is very impressive:
in some cases, the number of states that need to be visited for verification can be reduced
from exponential to polynomial in the size of the system description (code). For most
realistic examples, partial-order methods provide a significant reduction of the memory

and time requirements needed to verify protocols.

www.manaraa.com

www.manharaa.com

o AJLb

Acknowledgments

This work would not have been possible without the technical and moral support of
my thesis advisor, Pierre Wolper. He introduced me to the field of verification, and
opened doors for me in the research community. His enthusiastic supervision has been a
continuous source of encouragements to me. I consider myself fortunate that I had access

to his valuable guidance.

I am grateful to the other members of my reading committee, Professors Raymond
Devillers, Pascal Gribomont, Amir Pnueli, Daniel Ribbens, Joseph Sifakis, and Antti
Valmari, for their careful review of this work.

It has been a great pleasure for me to work closely with Didier Pirottin during these
last three years. I am thankful to Didier for numerous insightful discussions, and for his

help in implementing algorithms presented in this thesis.

I wish to thank Gerard Holzmann for freely sharing his considerable experience in
validating communication protocols. I learned how to build verification tools mainly
from his work and from discussions with him. He provided me with many challenging
examples of communication protocols, which have been (and still are) a very good source
of inspiration to me. He also made possible an exciting visit to AT&T Bell Laboratories
during the summer of 1992.

I have had the opportunity to discuss my research with many scientists at various
conferences and seminars. I thank all of them for being helpful and encouraging. I am
particularly grateful to Mark Drummond, Pascal Gribomont, Froduald Kabanza, Doron
Peled, and Antti Valmari for very fruitful discussions. Special thanks also go to Bernard
Boigelot, Philippe Lejoly, and Luc Moreau for reading and commenting on an early

version of this thesis.

This work was financially supported by the European Community ESPRIT projects
SPEC (3096) and REACT (6021), and by the Belgian Incentive Program “Information
Technology — Computer Science of the Future”, initiated by the Belgian State — Prime
Minister’s Service — Science Policy Office, which I gratefully acknowledge.

Last but not least, I would like to take this opportunity to thank my parents for their
constant moral support, and Anne-Christine for her love, for sharing ups and downs, and
for reminding me, when necessary, that computer science is not the most important thing

in life.

www.manaraa.com

www.manharaa.com

o AJLb

Contents

1 Introduction 11
1.1 Background and Motivation, 11
1.2 Partial-Order Methodso 13
1.3 Related Work 14
1.4 Organization of the Thesis 16

2 Concurrent Systems and Semantics 19
2.1 Representing Concurrent Systems 19
2.2 Semantics e e e 22
2.3 Example e 23
2.4 DISCUSSION e e e 24

3 Using Partial Orders to Tackle State Explosion 27
3.1 Independent Transitions 27
3.2 Traceso 29
3.3 Selective Searcho 31
3.4 Detecting Independency in Concurrent Systems 33

3.4.1 Towards More Independency 33
3.4.2 Refining Dependencies between Operations 35
3.4.3 Summary . . o. .. e e 39
41

.............................. 41

5 www.manharaa.com

6 CONTENTS

4.2 Computing Persistent Sets 43
4.3 Algorithm 1 (Conflicting Transitions) 44
4.4 Algorithm 2 (Overman’s Algorithm) 47
4.5 Algorithm 3 (Stubborn Sets) 51
45.1 Basicldea 51

4.5.2 Algorithm 53

4.6 CompariSOn v v i e e e e e e e e 56
4.7 Algorithm 4 (Conditional Stubborn Sets) 60
4.71 Basicldea 60

4.7.2 Algorithm 62

4.8 DISCUSSIONo e 67

5 Sleep Sets 71
5.1 BasicIdea 71
5.2 Algorithm 73
5.3 Properties of Sleep Sets Lo 76
5.3.1 On Combining Sleep Sets with Persistent Sets 76

5.3.2 Reducing State Matchings 78

6 Verification of Safety Properties 81
6.1 Beyond Deadlock Detection 81
6.2 Algorithm 83
6.3 Trace Automatao 86
6.4 Properties of Trace Automata 92
6.5 Comparison with Other Work 94

7 Model Checking 99
7.1 Beyond Safety Properties 99
7.2 Automata and Model Checking 100
for Model Checking 102

1 Fairness Assumptions 105

www.manharaa.com

CONTENTS 7

8 Experiments 109
8.1 How Can Partial-Order Methods Be Evaluated? 109
8.2 A Partial-Order Package for SPIN 111
83 Evaluation 112
8.4 State-Space Caching 116
85 Conclusion 120

9 Conclusions 123
9.1 Summary e e e e e e e e e e e e 123
9.2 Future Work 125
Bibliography 125

www.manharaa.com

8 CONTENTS

o AJLb

www.manharaa.com

List of Figures

2.1 Classical search 23
2.2 Global state space for the two-dining-philosophers system 25
3.1 Partial order of transition occurrences 30
4.1 Persistent-set selective search L. 42
4.2 Algorithm 1 44
4.3 Algorithm 2 48
4.4 Algorithm 3 54
4.5 Algorithm 4 64
5.1 Global state space for the system of Example 5.1 72
5.2 Selective search using persistent sets and sleep sets 73
5.3 Reduced state space with sleep sets 78
6.1 Reduced state space for the system of Example 6.1 82
6.2 Selective search using persistent sets, sleep sets, and proviso 84
6.3 Reduced state space with proviso for the system of Example 6.1 86
8.1 Reduction due to partial-order methods for dining philosophers 110
8.2 Reduced state space for the producer-consumer problem 111
8.3 Performances of state-space caching for MULOG3 118
8.4 Typical protocol example 121

9 www.manharaa.com

10 LIST OF FIGURES

www.manharaa.com

Chapter 1

Introduction

1.1 Background and Motivation

Concurrent systems are systems composed of elements that can operate concurrently
and communicate with each other. Each component can be viewed as a reactive system,
i.e., a system that continuously interacts with its environment. The environment of one
component is formed by the other components of the concurrent system, which is hence
assumed to be closed. (This implies that, in case of a single “open” reactive system, a
model of the environment in which this system operates has to be represented by other
component(s) of the concurrent system, in order to close the system.) The behavior
of a reactive system is defined by its ongoing behavior over time. This is quite unlike
the traditional “transformational” view of programs where the functional relationship
between the input state and the output state defines the meaning of a program. In-
deed, reactive systems are not dedicated to the transformation of data (like traditional
programs), but rather to the control of processes. There are many examples of such con-
current reactive systems: computer networks, asynchronous circuits, operating systems,
and various forms of plant-controller systems, such as telephone switches, flight-control

systems, manufacturing-plant controllers, etc.

Concurrent reactive systems are notably difficult to design. Indeed, such systems
can usually exhibit an extremely large number of different behaviors. This is due to
the combinatorial explosion resulting from all possible interactions between the different
concurrent components of the system, and the many possible race conditions that may
arise between them. This situation makes the development of concurrent reactive systems
an extremely delicate task. Testing is also of very limited help since test coverage is bound
to be only a minute fraction of the possible behaviors of the system. This situation

1s all the, more alarming since reactive systems are increasingly being used to control

11 www.manaraa.com

12 CHAPTER 1. INTRODUCTION

safety-critical devices (e.g., flight-control systems) or economically-crucial systems (e.g.,
telephone switches).

Verification provides the mean to ensure the correctness of the design of concurrent
reactive systems. Verification means checking that a system description conforms to its
expected properties. These properties can range from several forms of consistency to
complex correctness requirements specified, for instance, in a logical language. Verifica-
tion is thus the tool that enables the designer to be confident that the formal description
of the system he/she has obtained does indeed satisfy the problem requirements.

Four elements are necessary to define a verification framework:

e a representation of the system,
e a representation of the property to be checked,

e a conformation criterion according to which the representations of the system and

of the property are compared, and

a method (preferably an automatic algorithm) for performing this comparison.

Note that “verify” means to (mathematically) prove that a system meets its correctness
requirements. We specifically do not mean testing (unless it is exhaustive) or any other
method that ensures that the system is “probably” correct. In order to prove that a
system conforms to a property, all possible behaviors of the system have to be checked
to determine if all of them are compatible with the given property.

State-space exploration is one of the most successful strategies for analyzing and veri-
fying finite-state concurrent reactive systems. It consists in exploring a global state graph
representing the combined behavior of all concurrent components in the system. This
is done by recursively exploring all successor states of all states encountered during the
exploration, starting from a given initial state, by executing all enabled transitions in
each state. The state graph that is explored is called the state space of the system. If
the state space is finite, it can be explored completely.

Many different types of properties of a system can be checked by exploring its state
space: deadlocks, dead code, violations of user-specified assertions, etc. Moreover, the
range of properties that state-space exploration techniques can verify has been substan-
tially broadened during the last decade thanks to the development of model-checking
methods for various temporal logics (e.g., [CES86, LP85, QS81, VW86]).

Verification by state-space exploration has been studied by many researchers (cf. [Liu89,
Rud87]). The simplicity of the strategy lends itself to easy, and thus efficient, implemen-
tations. Moreover, verification by state-space exploration is fully automatic: no inter-

vention of the designer is required. This is a crucial feature for a verification technique

www.manaraa.com

1.2. PARTIAL-ORDER METHODS 13

to be used in industry. Indeed, systems are often (read always) developed under time
pressure, and verification steps that would be too much time consuming for the designer

are therefore not realistic.

All these reasons explain why many present verification tools follow this paradigm.
Examples of such tools are CAESAR [FGM*92], COSPAN [HK90], MURPHI [DDHY92],
SPIN [Hol91], among others. These tools differ by the formal description languages they
use for representing systems and properties, and by the conformation criterion according
to which these representations are compared. But all of them are based on state-space

exploration algorithms, in one form or another, for performing the verification itself.

As tools are being developed, the effectiveness of state-space exploration techniques
for debugging and proving correct concurrent reactive systems is increasingly becom-
ing established. The number of “success stories” about applying these techniques to
industrial-size systems keeps growing (e.g., see [Rud92]). Several very complex exam-
ples of concurrent systems have been analyzed and verified using state-space exploration
techniques. In many cases, these techniques were able to reveal quite subtle design errors.

The main limit of state-space exploration verification techniques is the often excessive
size of the state space. Owing to simple combinatorics, this size can be exponential in the
size of the description of the system being analyzed. This exponential growth is known

as the state-explosion problem.

The state-explosion problem is due, among other causes, to the modeling of concur-
rency by interleaving, or, more accurately, to the exploration of all possible interleavings
of concurrent events. For instance, the execution of n concurrent events is investigated

by exploring all n! interleavings of these events.

In this thesis, we develop an original approach for applying verification by state-space

exploration without incurring most of the cost of modeling concurrency by interleaving.

1.2 Partial-Order Methods

We show that exploring all interleavings of concurrent events is not a priori necessary for
verification: interleavings corresponding to the same concurrent execution contain related
information. One can thus hope to be able to verify properties of a concurrent system
without exploring all interleavings of its concurrent executions. This thesis presents a

collection of methods, called partial-order methods, that make this possible.

The_intuition behind partial-order methods is that concurrent executions are really
partial orders and that expanding such a partial order into the set of all its interleav-

ings is .an inefficient- way of analyzing concurrent executions. Instead, concurrent events

www.manaraa.com

14 CHAPTER 1. INTRODUCTION

should be left unordered since the order of their occurrence is irrelevant. Hence the name
“partial-order methods”. However, rather than choosing to work with direct representa-
tions of partial orders, the methods we develop keep to an interleaving representation of
partial orders, but attempt to limit the expansion of each partial-order computation to

just one of its interleavings, instead of all of them.

Precisely, given a property, partial-order methods explore only a reduced part of the
global state space that is provably sufficient to check the given property. The difference
between the reduced and the global state spaces is that all interleavings of concurrent
events are not systematically represented in the reduced one. We will see later that which

interleavings are required to be preserved may depend on the property to be checked.

The specification of the algorithms we develop is that they have to verify a given prop-
erty of a finite-state concurrent system while exploring as small a fraction as possible of
its state space. In this thesis, we present algorithms for exploring reduced state spaces for
the verification of three types of properties: absence of deadlocks, safety properties, and
linear-time temporal-logic formulas. These types of properties are considered separately
because checking more elaborate properties requires the preservation of more informa-
tion in the reduced state space, i.e, the exploration of more states and transitions. It
is therefore worth developing specific algorithms for the verification of standard types
of properties, and then using the appropriate algorithm for each property in order to

maximize the amount of reduction that can be obtained in practice.

It must be noted that, though the partial-order methods we develop are inspired by
partial-order semantics (especially by Mazurkiewicz’s traces [Maz86]), these methods do
not comply with any specific partial-order semantics. Indeed, the only requirement is that
the modified concurrent composition computes enough interleavings to make checking
the desired property possible. Not all concurrent executions need be represented if the
verification does not require it and, conversely, a given concurrent execution can be
represented by several redundant interleavings. The prime concern is to check the desired
property as efficiently as possible.

1.3 Related Work

It has been recognized for some time that concurrency and nondeterminism are not
the same thing. This observation has inspired a fairly large body of work on so-called
“partial-order models” of concurrency (cf. [Lam78, Maz86, Pra86, Win86]). Work in
this area studies various semantics for concurrency, and compares their properties. In
this thesis, we take a more pragmatic point of view towards partial-order models: our

goal is to.develop verification methods for concurrent finite-state systems that avoid the

www.manaraa.com

1.3. RELATED WORK 15

part of the combinatorial explosion due to the modeling of concurrency by interleaving.
Our approach yields results identical to those of methods based on classical interleav-
ing semantics, it just avoids most of the associated combinatorial explosion. It is also
quite orthogonal to the verification of properties expressed in partial-order temporal log-
ics (cf. [PW84, KP86, KP87, Pen88, Pen90]). Indeed, these logics are designed to be

semantically more expressive. We are “only” more efficient.

Several approximate methods based on simple heuristics have been proposed to restrict
the number of interleavings that are explored [GH85, Wes86, Hol87]. These heuristics
carry with them the risk of incomplete verification results, i.e., they can detect errors but
cannot prove the absence of errors. In contrast, the partial-order methods we develop
in this thesis reduce the number of interleavings that must be inspected in a completely
reliable manner, provably without the risk of any incompleteness in the verification re-

sults.

The closest work to the one presented here is certainly that of Valmari [Val91|, which
extends previous work done by Overman [Ove81]. Indeed, Valmari has developed an ap-
proach (based on “stubborn sets”) for generating reduced state spaces that can be used
for checking properties of concurrent systems. Despite this general similarity with our
approach, there are many differences that distinguish Valmari’s work from ours. These
important technical differences will be pointed out during the presentation of this thesis.
Note, as a first notable difference, that Valmari does not rely on any partial-order seman-
tics to justify and prove the correctness of his algorithms. This makes the presentation
of the stubborn set method (see [Val91]) less modular and, we believe, less intuitive than
the style of presentation using partial-order semantics (precisely Mazurkiewicz'’s traces)
adopted in this thesis. This is of course a subjective point of view. However, this issue
has implications that go beyond a simple question of presentation. Indeed, using partial
orders and a notion of (in)dependency as done in this thesis, we were able, among other
things, to generalize and improve the stubborn set method, as will be presented in Chap-
ter 4. This is a more solid argument in favor of our approach to the problem. In any
case, our partial-order approach indubitably brings a new perspective on the stubborn
set theory.

Strategies for proving properties of concurrent systems without considering all possible
interleavings of their concurrent actions have been proposed in [AFdR80, EF82, Pnu85,
SAR89, KP92b, JZ93|. These proof methods are applied in the context of an inference
system, in which the correctness of a system is established by proving assertions about
its components. This approach to verification has the advantage of not being restricted
to finite-state systems. On_the other hand, it requires proofs that are manual. Even
with the help of a theorem prover, carrying out proofs with a theorem prover is far from

fully autematic since 'most steps of the proof require inventive interventions from the

www.manaraa.com

16 CHAPTER 1. INTRODUCTION

user. In contrast, the focus of this thesis is purely on algorithmic issues, since we discuss

fully-automatic state-space exploration techniques.

The idea that the cost of modeling concurrency by interleaving can be avoided in finite-
state verification also appeared in [JK90, PL90, McM92, Esp92]. In [JK90], the problem
of finding an “optimal” reduced state space with just enough transitions and states to
preserve Mazurkiewicz’s trace semantics is addressed. In [PL90], a method that relies
on a pomset grammar description of the system is introduced. Also, in [McM92, Esp92],
one finds a verification method that works by unfolding a Petri net description of a
concurrent system into a finite acyclic structure. These methods are quite different from
those developed in this thesis. Note that none of these other methods have been widely
experimented on a large set of realistic examples, as it has been the case for the methods

presented here (see Chapter 8).

The key contributions of the material presented in this thesis already appeared in
a series of papers [God90, GW9la, GW91b, GHP92, HGP92, GP93, GW93, WG93,
GWO94]. The thesis presents most of the results published in these papers in a unified
framework, and relates them with each other. The thesis also extends several of these
results. References to preliminary published versions are included in the presentation of
the following Chapters.

1.4 Organization of the Thesis

In Chapter 2, we introduce a simple model for representing concurrent systems, and
define its semantics. Then, we motivate the choice of this model, and compare it to other

existing models and formalisms.

In Chapter 3, we show that exploring all possible interleavings of all possible “inde-
pendent” transitions of a system is not necessary for verification. We precisely define the
notion of independency, and discuss how to detect independency between transitions in
concurrent systems. Interleavings of independent transitions are related by the notion
of Mazurkiewicz’s trace. The algorithms developed in this thesis take advantage of the
independency between transitions to avoid exploring all their interleavings, and thus to
avoid exploring parts of the state space. Such a partial exploration of the state space is
called a selective search.

In Chapter 4, a first technique for determining the transitions that need to be explored
in a selective search, called the persistent set technique, is presented. This technique actu-
ally corresponds to a whole family of existing algorithms, which are presented, discussed,
and compared with each other. Then, a new algorithm that generalizes and improves the

previous.ones in a sense that will be given later is described.

www.manaraa.com

1.4. ORGANIZATION OF THE THESIS 17

In Chapter 5, another technique for selecting transitions to be explored in a selective
search, called the sleep set technique, is introduced. Sleep sets are shown to be compatible

with persistent sets, and their properties are studied.

In Chapter 6, the persistent set and sleep set techniques, used for deadlock detection
in Chapters 4 and 5, are extended in order to make possible the verification of arbi-
trary safety properties. Trace automata are introduced to justify the correctness of this
extension.

In Chapter 7, we address the model-checking problem for linear-time temporal-logic.
We point out the key problems underlying the verification of liveness properties using
partial-order methods, and compare the solutions that have been proposed for solving

these problems. We also show how the proposed techniques complement each other.

In Chapter 8, results of experiments on various examples using the algorithms that
have been developed in this thesis are presented. These algorithms have been imple-
mented in an add-on package for the protocol verification system SPIN. This partial-order
package is briefly described, and instructions for obtaining a copy of it by anonymous ftp
are given. The complementarity between partial-order methods and state-space caching
is also pointed out. The practical contribution of partial-order methods is finally dis-

cussed.

In Chapter 9, a summary of our contributions is presented together with some areas

for further study.

www.manharaa.com

18 CHAPTER 1. INTRODUCTION

www.manharaa.com

Chapter 2

Concurrent Systems and Semantics

In this Chapter, we introduce a simple representation for modeling concurrent systems,
and define its semantics. Then, we motivate the choice of this model, and compare it to

other existing models and formalisms.

2.1 Representing Concurrent Systems

Concurrent systems are composed of different components, called processes, that can act
in parallel and interact with each other. In this thesis, we will assume that processes
are finite-state, i.e., that the number of states that they can reach is finite. We will also
assume that processes can synchronize by executing together joint transitions (rendez-
vous), and communicate by performing operations on shared objects. Formally, our

model for representing concurrent systems is the following.

A labeled formal concurrent system (LFCS), or system for short, is a tuple (P, O, T, v, s¢),

where

e P is a finite set of n processes,

O is a finite set of m objects,

7T is a finite set of transitions,

e v:7 — Y isa labeling function that associates a label, also called an action, taken

from-an-alphabet-22-with each transition of 7", and

sgis the wnitial state of the system.

19 www.manaraa.com

20 CHAPTER 2. CONCURRENT SYSTEMS AND SEMANTICS

Each process P; € P is a finite nonempty set of local states, or control points. Processes

are pairwise disjoint.

Processes can access a finite set of objects. An object O is characterized by a pair
(V,OP), where V is the set of all possible values for the object (its domain), and OP
is the set of operations that can be performed on the object. Each operation op; € OP
is a (possibly partial) function IN; x V. — OUT; x V| where IN; and OUT; repre-
sent respectively the set of possible inputs and outputs of the operation. The notation
op;(in,v) — (out,v") denotes the fact that the execution of the operation op; € OP with
input value n € I N; while the value of the object is v yields an output value out € OUT,;
and changes the value of the object to v'. For operations op; that do not take an input
(resp. do not return an output), the set IN; (resp. OUT;) degenerates to a singleton,

“w »

and we denote its unique meaningless value by

Example 2.1 Consider an object “boolean variable” whose domain V' is the set {0, 1}.
We define two operations on this object.

e A Read operation for which the set IN is {-}, and the set OUT is {0,1}. A Read
operation is always defined, and its effect is defined by Read(—, v) — (v,v), for all
v e {0,1}.

e A Write operation for which the set I N is {0,1}, and the set OUT is {-}. A Write
operation is always defined, and its effect is defined by Write(v',v) — (-, v'), for
all v, 0" € {0,1}.

A global state s, or simply a state, of a system is an element of the set S = P, x
X Py x Vixoo o x Vo Astate s = (s(1),8(2),...,s(n),v(1),v(2),...,v(m)) assigns to
each process P; a local state s(i) € P; of this process (this can be viewed as the formal
counterpart of the notion of “program counter” for a physical process), and associates
a value v(j) € V; with each object O;. The initial state sy is an element of S. In what
follows, we write [€ s to mean Ji,1 < ¢ < n such that [= s(i), i.e., for notational

convenience we allow ourselves to view the state s as a set rather than as a vector.

A transition ¢ € 7 is a tuple (L,G,C, L'). Both L and L' are partial control states,
i.e., nonempty subsets of Ul | P; such that for each 1 <i < n, [LNP| = |L'NnP| < 1.
The sets L and L' are respectively called the preset and postset of the transition ¢. In the
sequel, pre(t) denotes the preset of the transition ¢, while post(t) denotes the postset of
the transition . The processes P,’s that participate in a transition t, i.e., the processes
P;’s such.that |L NP = |L'N P, = 1, are said to be active for this transition. The set

www.manaraa.com

2.1. REPRESENTING CONCURRENT SYSTEMS 21

of processes that are active for a transition ¢ is denoted by active(t). The guard G of
the transition is a conjunction of conditions ¢;. Conditions ¢; in GG can test the current
value of objects by using operations on these objects that do not modify their value. The
command C' of the transition is a function from V; x ... xV,, to V; x ... x V,, defined by
a sequential composition of operations on objects, with the restriction that an operation
that modifies the value of an object O; cannot be followed by any other operation on O;

in the remainder of the sequence of operations defining the command.

For instance, if = and y are two objects of type “boolean variable” as defined in
Example 2.1, “z := y” denotes a command that performs a Read operation on object y,
and then performs a Write operation on object z with the output value returned by the
Read operation. If z is v(k) and y is v(l), the function defined by the command z := y is
the function f from Vj x ... x V,, to V] x ... x V, such that f((v(1),v(2),...,v(m))) =
(v'(1),0'(2),...,v"(m)) where v'(i) = v(i), ¢ # k, and v'(k) = v(l).

We assume that, for each operation op that appears in the command C' of a transition,
if op is not defined for all inputs and all values of the object, there is a condition ¢;
(expressed by using operations on the object and predicates on its domain and the domain
of its inputs and outputs) in the guard G of the transition such that op is defined iff ¢; is
true. Operations that appear either in the guard G or in the command C' of a transition
are said to be used by this transition. The set of operations that are used by a transition
t is denoted by used(t). An object is said to be accessed by a transition if the transition

uses an operation on the object.

A transition t = (L, G,C, L") is enabled in a state s iff L C s and G is true in s. If ¢
is not enabled in s, t is said to be disabled in state s. A transition ¢ that is enabled in a
state s = (s(1),s(2),...,s(n),v(1),v(2),...,v(m)) can be executed. After the execution
of t, the system reaches a state s’ = (s'(1),5'(2),...,5'(n),v'(1),v'(2),...,v'(m)) such
that:

e {5(1),5(2),...,8(n)} ={(s(1),s(2),...,8(n)} \ L) U L'; and

e the command C maps (v(1),v(2),...,v(m)) to (v'(1),v'(2),...,v'(m)).

State s’ is called the successor of s by t. We write s % &' to mean that the transition
t leads from the state s to the state s’, while s = s’ means that the finite sequence of

transitions w leads from s to s'. If s = s/, s is said to be reachable from s.

Note 2.2 Transitions, as well as operations on objects, are deterministic: the execution
of a transition ¢ in a state s leads to a unique successor state. This is not a restriction
since “nondeterministic fransitions” can always be modeled by a set of deterministic

transitions with non mutually exclusive guards. m

www.manaraa.com

22 CHAPTER 2. CONCURRENT SYSTEMS AND SEMANTICS

2.2 Semantics

A concurrent system as defined here is a closed system: from its initial state, it can evolve
and change its state by executing enabled transitions. Therefore, a very natural way to
describe the possible behaviors of such a system is to consider its set of reachable global

states and the transitions that are possible between these.

More specifically, the joint global behavior of all processes P; in a LFCS can be repre-
sented by an automaton Ag = (3, S, A, s9) where

e Y is the alphabet of actions of the LFCS,
e S is the set of states of the LFCS,
e A C S x XY xS isthe transition relation defined as follows:

(s,a,8) e Aiff e T 555 Aa=u(t),
e 3¢ is the initial state of the LFCS.

A transition of A corresponds to the execution of a single transition ¢ € 7 of the system,
and is labeled by v(t). To avoid any confusion with the transitions of 7, transitions of
A will be referred to as global transitions, while transitions of 7 will be referred to as

transitions.

It is natural to restrict Ag to its states and transitions that are reachable from s,
since the other states and transitions play no role in the behavior of the system. In what
follows, a “state in Ag” denotes a state that is reachable from the initial state sq. Ag is

called the global state graph or global state space of the system.

Unless otherwise specified, we will assume that the domain of all objects is finite. This

implies that the size of Ag is finite.

In practice, Ag can be computed by performing a search of all the states that are
reachable from the initial state so. An algorithm for performing such a search is shown
in Figure 2.1. This algorithm recursively explores all successor states of all states en-
countered during the search, starting from the initial state, by executing all enabled
transitions in each state (line 7-8). The main data structures used are a Stack to store
the states whose successors still have to be explored, and a hash table H to store all the
states that have already been visited during the search. The set of all transitions that
are enabled in a state s is denoted by enabled(s). The state reached from a state s after
the execution of a transition ¢ is denoted “succ(s) after ¢”. It is easy to prove that all the
states of Ag, 1.e., all the states that are reachable from s, are visited during the search
performed by the algorithm of Figure 2.1 [AHU74].

www.manaraa.com

2.3. EXAMPLE 23

1 Initialize:Stack is empty; H is empty;

2 push (s¢) onto Stack;

3 Loop: while Stack # 0 do {

4 pop (s) from Stack;

5 if s is NOT already in H then {

6 enter s in H;

7 T = enabled(s);

8 for all t in T do {

9 s’ = succ(s) after t; /* execution of ¢t */

10 push (s') onto Stack;
11 }

12 }

13 }

Figure 2.1: Classical search

For the time being, let us define the set of possible behaviors of a system as the set
of all possible finite sequences of labels (actions) that the system can execute from its
initial state. (Infinite sequences will be considered later in Chapter 7.) Formally, a finite
sequence (word) w = ajay...a, of actions in ¥ is accepted by Ag if there is a sequence
of states 0 = s¢...s, such that sy is the initial state of Ag and, for all 1 < i < n,
(si—1,a;,8;) € A. We call such a sequence o a computation of Ag on w. The set of words
accepted by Ag is called the language accepted by Ag. With our definition, this language
is prefix closed.

2.3 Example

As an example of concurrent system, consider the well-known dining-philosophers prob-
lem, with two philosophers. This system can be modeled by the following LFCS.

e P = {A B}, where A = {ag,ay,as,a3} and B = {bg, by, by, b3} (the system is

composed of two processes A and B; each process models one philosopher);

o O ={f. fo}, where f, and f, are two objects of type “boolean variable” as defined
in Example 2.1 (f; and f, model two forks that can be accessed by philosophers A
and B);

www.manaraa.com

24 CHAPTER 2. CONCURRENT SYSTEMS AND SEMANTICS

o T = {t st], tP B +B 18} where

td = (ap, /1 =0, f1:=1,ay), tB=(by,fo=0,fo:=1,b;), (take left fork)

td = (a1, fo =0, fy:=1,ay), t8=(b;,fi =0,f :=1,by), (take right fork)
ti = (ay, true, f :== 0, a3), tB = (by, true, fy := 0, b3), (release left fork)
ty = (as, true, fo := 0, ap), t8 = (b3, true, f; := 0, by). (release right fork)

e v: 7 +— Y is the identity function from 7 to itself;

o sop = (ag,bp,0,0) € A x B xVy xVy, (initially, A is in state ag, B is in state by,
and the two forks are released).

Forks are modeled by boolean variables f;. When f; is equal to 0, fork f; is ready to be
taken by any philosopher. When f; is equal to 1, fork f; is already taken by a philosopher,
and cannot be taken by the other. Consider philosopher A. From its initial local control
state ag, A can try to take fork fi: this is modeled by transition ¢{! where process A tests
in its guard if fork f; is available (it tests if f; is equal to 0), and then takes it if it is
available by executing f; := 1 (it sets the value of f; to 1). Then, process A can try to
take fork f, in a similar way by trying to execute transition ¢;'. When A has taken both
its left and right forks, i.e., when it reaches its local state a,, it can eat. Then, it releases
its left fork (transition t4') and next its right fork (transition ¢7), and goes back to its
initial (thinking) state. Process B proceeds in a similar way.

The global state space Ag of the two-dining-philosophers system is shown in Figure 2.2.

It contains 8 states and 10 transitions.

2.4 Discussion

Why did we choose to represent concurrent systems by labeled formal concurrent systems
(LFCS) as defined above? LFCS is the result of our search for a unique model that is
sufficiently general for serving as support for all the various notions and algorithms that
will be presented in this thesis.

Despite its simplicity, LFCS can be used to model easily many different types of
systems and communication mechanisms. Several processes can synchronize on the
same transition by being active for this transition. This enables one to model two-
way rendez-vous (pairwise CCS-like synchronizations) as well as multi-way rendez-vous
(multi-process CSP-like synchronizations). Processes can also communicate asynchro-
nously by performing operations on shared objects, like shared variables, or semaphores.

Message-passing communication is possible via objects modeling FIFO buffers.

www.manaraa.com

2.4. DISCUSSION 25

(a37b(]a071) (a'07b371a0)

Figure 2.2: Global state space for the two-dining-philosophers system

LFCS can be viewed as an extension of the formal concurrent systems (FCS) of [Gri90],
itself being inspired by a formalism used in [Sif82]. In FCS, transitions are not labeled,
no particular initial state is associated with a system, and objects (called variables in
FCS) are just memory locations without a general notion of operation. FCS is presented
in [Gri93] as a trade-off between CSP [Hoa85] and UNITY [CM88], which are both related
to Dijkstra’s Guarded Command language [Dij76]. Indeed, FCS (and LFCS) is structured
into processes as in CSP, while the notion of parallel composition of processes is avoided
as in UNITY by explicitly representing synchronizations between processes by “joint”
transitions, i.e., transitions for which several processes are active. In this way, (L)FCS
can represent concurrent systems independently of a particular semantics of parallel
composition of processes. LFCS has also similarities with Petri Nets [Pet81, Rei85]. By
removing the set O of objects in a LFCS, one obtains a contact-free one-safe Petri Net
in which the number of tokens remains permanently equal to the number n of processes,

and whose transitions are labeled with symbols in .

One could wonder why objects have been introduced in LFCS. Indeed, since the set
of possible values for all objects is assumed to be finite, objects could be represented by
finite-state processes. However, in practice, representing objects by processes is tedious.

For example, a variable whose value can range on a finite domain V' would be represented

www.manaraa.com

26 CHAPTER 2. CONCURRENT SYSTEMS AND SEMANTICS

by a process containing as many local states as there are possible different values for the
variable, i.e., |V| states. Objects enable one to model data structures more compactly

and directly.

Another, more fundamental, reason for using objects is that control should be clearly
distinguished from data in the modeling of concurrent reactive systems. Indeed, the
properties one wants to check on such systems are often properties that involve only the
control part of the processes of the system. Hence, control is of primary interest during
the analysis of such systems, while data are relevant only if they influence the control
part of the processes. Therefore, distinguishing control from data in the model itself can
help to identify what is relevant for the verification of a given property, and what is not.
We will show that the methods developed in this thesis are able to take advantage of

these information to make verification more efficient.

For a similar reason, the notion of process is important in LFCS: information about
which process is active for which transition is exploited by some of the algorithms that
will be presented later to further improve the verification (see Chapter 4). The reason

why transitions in a LFCS are labeled will also appear later, in Chapter 7.

www.manharaa.com

Chapter 3

Using Partial Orders to Tackle
State Explosion

When the global state space Ag of a system is finite, it is theoretically possible to explore
the whole of Ag in order to check properties of the system. In practice, this is often not
the case: Aq is frequently much too large to be exhaustively explored. This phenomenon
is called the state-explosion problem.

One cause of the state-explosion problem is the modeling of concurrency by inter-
leaving: all interleavings of all concurrent transitions of the system are represented in
Ag. In this Chapter, we show that exploring all these interleavings is not necessary for

verification.

3.1 Independent Transitions

The intuition behind the methods developed in this thesis is that concurrent executions
are really partial orders where concurrent “independent” transitions should be left un-
ordered. When can transitions be considered as independent? The intuitive idea is that
transitions are independent when the order of their occurrence is irrelevant.

This notion of independency between transitions and its complementary notion, the
notion of dependency, can be formalized by the following definition (adapted from [KP92al).

Definition 3.1 Let 7 be the set of transitions in a LFCS and D C 7 x 7 be a binary,
reflexive, and symmetric relation. The relation D is a valid dependency relation for the
LECS iff for all ¢;,t, € T, (¢1,t2) ¢ D (t, and t, are independent) implies that the two
following properties-hold for all global states s € S of the LFCS:

27 www.manaraa.com

28 CHAPTER 3. USING PARTIAL ORDERS TO TACKLE STATE EXPLOSION

1. if ¢; is enabled in s and s h, s', then t, is enabled in s iff ¢, is enabled in s’

(independent transitions can neither disable nor enable each other); and

2. if t; and t, are enabled in s, then there is a unique state s’ such that s 2L o and

s (commutativity of enabled independent transitions).

This definition characterizes the properties of possible “valid” dependency relations for
the transitions of a given LECS. One can wonder if this definition is of more than semantic
use. Indeed, it is not practical to check the two properties listed above for all pairs of
transitions for all states in order to determine which transitions are independent and
which are not. Fortunately, in practice, it is possible to give easily checkable syntactic

conditions that are sufficient for transitions to be independent.

For instance, with LFCS, a sufficient syntactic condition for two transitions ¢; and t,
in 7 to be independent is that:

1. the set of processes that are active for ¢; is disjoint from the set of processes that

are active for to, and

2. the set of objects that are accessed by t; is disjoint from the set of objects that are
accessed by t,.

It is easy to see that the dependency relation induced by the above syntactic condition
is a valid one. Detecting independency in concurrent systems is further discussed in
Section 3.4.

Note 3.2 With the LFCS model we have chosen for representing concurrent systems,
each global transition in the global state space of a system corresponds to the execution
of exactly one transition appearing in the representation of the system, i.e., one element
of the set 7 of the LFCS. With models that include a notion of parallel composition of
processes, the correspondence between global transitions and transitions that appear in
the description of a system is less straightforward. Indeed, this correspondence depends
on the semantics of the parallel composition, which determine how several transitions
of different processes can be synchronized to form one global transition. Such global
transitions can then be grouped into “system transitions”, on which dependency relations

can be defined [GW93]. m

www.manaraa.com

3.2. TRACES 29

3.2 Traces

Following the work of Mazurkiewicz [Maz86|, one can use the notion of independent
transitions to define an equivalence relation on sequences of transitions: two sequences of
transitions are equivalent if they can be obtained from each other by successively permuting
adjacent independent transitions. Thus, given a valid dependency relation, sequences of

transitions can be grouped into equivalence classes which Mazurkiewicz calls traces.

Formally, Mazurkiewicz’s traces are defined as follows [Maz86].

Definition 3.3 A concurrent alphabet is a pair A = (7, D) where 7 is a finite set of
symbols (here transitions), called the alphabet of A, and where D is a binary, reflexive,

and symmetric relation on 7 called the dependencyin A. m

The relation I, = 72\ D stands for the independency in A.

Definition 3.4 Let A = (7, D) be a concurrent alphabet, let 7* represent the set of
all finite sequences (words) of symbols in 7, let - stand for the concatenation operation,
and let € denote the empty word. We define the relation =, as the least congruence in
the monoid [7*; -, ¢| such that

(tl,tz) € IA = 11ty = toly.

The relation =, is referred to as the trace equivalence over A. [T*;- ¢] is a monoid
in which the concatenation operation - may be commutative for some pairs of different

elements. It is sometimes called a free partially commutative monoid over 7.
Definition 3.5 Equivalence classes of =, are called traces over A. m

The trace containing a sequence of transitions w will be denoted [w](7,p) or [w] for short
when there is no ambiguity. A trace is fully characterized by one of its sequences w
and a concurrent alphabet A = (7', D): by successively permuting adjacent independent

transitions in w, one can obtain all the other sequences in [w].

In Mazurkiewicz’s trace semantics, the behavior of a concurrent system is defined as a
set of traces. Mazurkiewicz’s trace semantics is often referred to as being a partial-order
semantics because it is possible to define a correspondence between traces and partial

orders of occurrences of transitions [MaZSG].

www.manaraa.com

30 CHAPTER 3. USING PARTIAL ORDERS TO TACKLE STATE EXPLOSION
t
tl tl
t3

Figure 3.1: Partial order of transition occurrences

Definition 3.6 A relation R C A X A on a set A that is reflexive, antisymmetric, and
transitive is called a partial order. A partial order R C A x A is also a total order if, for
all a;,ay € A, either (a1, ay) € R or (as,a;) € R [LP81]. m

A partial order R C A X A can be represented graphically by a directed graph whose
vertices are elements of A and whose edges are elements of R: (a;,a;) € R iff there is an

edge from a; to as.

Definition 3.7 A linearization of a partial order R C A x A is a total order R'¥ C Ax A
such that ¥ D R. m

The following theorem states that a partial order can be represented by the set of its
linearizations (e.g., [Pra86]).

Theorem 3.8 The intersection of all the linearizations of a partial order is that partial
order.

A correspondence between traces and partial orders of transition occurrences can be
defined in such a way that the set of transition sequences in the trace is the set of all

linearizations of the partial order of transition occurrences.

Example 3.9 Consider the set 7 = {t;, 5,13} of transitions, and assume that ¢; is
dependent with respect to t, and t3, while ¢, and t3 are independent: we have D =
{(t1,t1), (ta, L), (t3,t3), (t1, t2), (ta, 1), (t1,t3), (t3,t1)}. Then, the sequence w = titytsty
of transitions defines the trace [w] = {t;tot3ty, t1t3tat1} (the second sequence tit3tot; can
be obtained from the first sequence t,t,t3t; by permuting the two adjacent independent
transitions t, and t3 in_the first sequence). The sequence w contains 4 transition oc-
currences. Consider the partial order R C A x A that is graphically represented in

Figure 3.1: vertices.are elements of A (transition occurrences), while edges are elements

www.manaraa.com

3.3. SELECTIVE SEARCH 31

of R (edges implied by transitivity or reflexivity are omitted in Figure 3.1). The set of
all linearizations of this partial order of transition occurrences coincides with the set of

transition sequences in [w]. ®

By definition, all transition sequences in a given trace contain the same number of
transitions. Moreover, we have the following.

Theorem 3.10 Let s be a state in Ag. If s = 51 and s =% 55 in Ag, and if [wy] = [wy],
then s — s5.

Proof:

By definition, all w’ € [w] can be obtained from w by successively permuting pairs of
adjacent independent transitions. It is thus sufficient to prove that, for any two words

w; and w, that differ only by the order of two adjacent independent transitions, if s = s’

then s =% s'.

Let us thus assume that w =¢;...ab...t, and w' =t;...ba...t,. We have

t1 to t; a b tn
§— 81 — S3...—>8; — Sj41 — Si42... — Sp
and
t1 to t; b / a / [2% !
S—>Sl—>52...—>Si—>5i+1—>Sz~+2...—>5n.

Since a and b are independent, it follows that s;;» = sj,,. Since the transitions in w,

from s;;5 and the transitions in w, from sj,, are identical, we have s, = s,. ®

3.3 Selective Search

From Theorem 3.10, it follows that, in order to determine if a state is reachable by any
sequence of transitions in a trace, it is sufficient to explore only one sequence in that
trace. This property is fundamentally what will allow us to explore only a reduced part

of the global state space Ag of a system in order to prove properties of that system.

Indeed, consider for instance the problem of detecting deadlocks, i.e., terminating
states. A deadlock in a system is a state that is reachable from the initial state sy of the

system and where all processes are blocked. Formally, one has:

Definition 3.11 A-state s in Ag is a deadlock iff there is no transition from s in A;. W

www.manaraa.com

32 CHAPTER 3. USING PARTIAL ORDERS TO TACKLE STATE EXPLOSION

If there is a deadlock d in Ag, there is a sequence w of transitions from s¢ to d in Ag,
and hence a trace [w] from sq to d in Ag. Since all sequences w' € [w] also lead from s

to d, it is sufficient to explore only one of the w' in [w] to visit d, and thus to detect it.

Consequently, it is sufficient to explore only one interleaving for each trace the system
can execute from its initial state in order to detect all deadlocks d in this system. Deadlock
detection is thus reduced to the problem of exploring (at least) one interleaving per

“maximal” trace the system can execute from its initial state.

The latter problem can be solved by performing what we call a selective search in
Ag. A selective search operates as a classical state-space search except that, at each
state s reached during the search, it computes a subset 1" of the set of transitions that
are enabled in s, and explores only the transitions in 7', the other enabled transitions
being not explored. Clearly, a selective search through Ag only reaches a subset (not
necessarily proper) of the states and transitions in Ag. If, in each visited state s, the
first transition of (at least) one interleaving per trace leading to a deadlock is selected
in the set T of transitions to be explored from s, all deadlocks in Ag will eventually be
visited by such a selective search.

In the next two Chapters, we develop two techniques for computing such sets T
“persistent sets” and “sleep sets”. The specification of the algorithms we present in
Chapters 4 and 5 is thus that they should find all deadlocks in Ag while exploring as
small a fraction as possible of Ag. The verification of more general properties than
deadlock detection will be discussed in Chapters 6 and 7.

Before turning to the presentation of persistent sets and sleep sets, let us further
discuss how to detect independency in the description of concurrent systems.

Note 3.12 It might appear that we are using Mazurkiewicz’s trace semantics, i.e., that
we consider that the behavior of a system is the set of all possible traces it can execute
from its initial state. This is not really so. Indeed, to view Mazurkiewicz’s theory as a
semantics, the dependency relation should be considered as part of the semantics: given a
dependency relation, one can determine the Mazurkiewicz semantics of a system. The cri-
terion for a partial construction of the state space would then be that the Mazurkiewicz’s
trace semantics are preserved. Here a less restrictive point of view is taken. Indeed, our
only requirement on selective searches is that they visit enough interleavings to make
checking the desired property possible. The link with Mazurkiewicz’s trace semantics is
only in the fact that the algorithms presented in the next Chapters rely on the concept
of independency and on the properties it implies, especially Theorem 3.10. m

www.manaraa.com

3.4. DETECTING INDEPENDENCY IN CONCURRENT SYSTEMS 33

3.4 Detecting Independency in Concurrent Systems

3.4.1 Towards More Independency

The algorithms presented in this thesis take advantage of the independency between tran-
sitions that are simultaneously enabled in order to avoid exploring all their interleavings,
and thus to avoid exploring parts of the state space. It is therefore desirable to be able

to detect independency between transitions as efficiently as possible.

In Section 3.1, we gave the following sufficient syntactic condition for two transitions
t; and t5 in 7 to be independent in our LFCS model.

A sufficient syntactic condition for two transitions ¢; and ¢, in 7 to be inde-

pendent is that:

1. the set of processes that are active for ¢; is disjoint from the set of
processes that are active for ¢y, and

2. the set of objects that are accessed by t; is disjoint from the set of objects
that are accessed by t,.

Intuitively, “dependency” may arise between two transitions because of either their con-

trol part (point 1) or their data part (point 2).
We now discuss how more discriminating criteria can be developed.

For instance, point 1 of the above condition could be replaced by the new condition:

(pre(ty) U post(ty)) N (pre(tz) U post(ty)) = 0.

Indeed, it is easy to show that this new condition also induces a valid dependency re-
lation, i.e., that two transitions t; and ¢, that satisfy the new condition and that do
not both access a common object cannot enable nor disable each other, and are com-
mutative. Moreover, this new condition is weaker than the previous one. Indeed, two
transitions t; and ¢, that satisfy point 1 above also satisfy the new condition, while
the converse is not true (e.g., consider the two transitions ¢t; = ({1}, Gy, C},{l,}) and
ty = ({l3}, G, Cy, {l4}) such that 1y, 15,135,104 are local states of a same process). Hence,
one might think that using the new condition is preferable. Maybe surprisingly, this is
not the case. Indeed, as will appear in the next Chapters, what actually matters is to
have as few dependencies as possible between transitions that may be simultaneously en-
abled. Since it can be shown that two transitions ¢, and ¢, that satisfy the new condition
but that do not satisfy point 1 above cannot be simultaneously enabled, this particular

refinement of point.1 is actually useless (see Section 4.3).

www.manaraa.com

34 CHAPTER 3. USING PARTIAL ORDERS TO TACKLE STATE EXPLOSION

Concerning point 2, “dependency” may arise if ¢t; and ¢, access a common object.
Now, not every pair of operations on an object need be considered as dependent. Thus
we can obtain more independency by considering not only which objects a transition
accesses, but also which operations on these objects the transition performs.

We thus introduce the following definition of a valid dependency relation between the
operations on an object.

Definition 3.13 Let O = (V,OP) be an object, and Do C OP x OP be a binary
and symmetric relation. The relation Dy is a walid dependency relation for O iff for
all opy,0py € OP, (op1,0ps) € Do (op; and op, are independent) implies that the two

following properties hold for all values v € V| and for all inputs in; and in,:

1. if op;(iny, v) is defined, with op;(in;,v) — (outy,v]), then opy(ing,v) is defined iff
ops(ing, vy) is defined; and
2. if op1(iny,v) and ops(ing, v) are defined, then Jouty, outs, v, v}, v" such that:

® Opy (inlav) - (OU’tlav’l) and Op?(inZ; Ull) - (OU’tQa U”); and

e 0ps(ing,v) — (outy, vh) and op;(ing, vh) — (out;,v")

(commutativity of operations, together with preservation of the outputs).

Example 3.14 Consider again the example of an object representing a boolean value. A
valid dependency relation between the operations on this object is given in the following
table, where “+” means that operations are dependent, while “~” denotes the fact that

operations are independent:

DEP. | Write | Read
Write + +
Read + -

Two Write operations are dependent because they can result in the object having dif-
ferent values depending on the order of their execution. A Read and a Write operations
are dependent because the output of the Read can be different depending on the order
of execution of these operations. Two Read operations are independent because they are
always defined and return the same output independently of the order of their execution.
|

Now, we can define a dependency relation between transitions in a LFCS from depen-

dency relations between operations.

www.manaraa.com

3.4. DETECTING INDEPENDENCY IN CONCURRENT SYSTEMS 35

Definition 3.15 Let 7 be the set of transitions in a LFCS. Two transitions t{,t, € 7

are independent if:

1. the set of processes that are active for ¢; is disjoint from the set of processes that

are active for t,, and

2. Yop; € used(t,) and Yop, € used(ty), if op; and op, are two operations on a same
object, then op; and op, are independent.

One can easily check that the dependency relation on transitions obtained with this
definition is weaker than the one of Section 3.1 and is a valid one. But, it is possible to
go further.

3.4.2 Refining Dependencies between Operations

In practice, there are essentially two ways of refining dependencies between operations:

by refining the operations themselves and by using conditional dependency [GP93].

Refining an operation op; consists of splitting the operation viewed as a set of pairs
(IN; x V,OUT; x V) in several parts, and considering these different parts as being

different operations, between which some independency may arise.

Example 3.16 Consider again the example of the object corresponding to a boolean
variable. We saw that, in general, two Write operations are dependent. But there
are special cases of Write operations that can be considered as being independent: for
instance, two complementation operations Compl, formally defined by Compl(-,0) — (-
,1) and Compl(-,1) — (-, 0) (always defined), can be considered as being independent

according to Definition 3.13. We obtain a new dependency relation:

DEP. | Write | Compl | Read
Write + + +
Compl + - +

Read + + —

In the previous example, the new dependency relation obtained after refining the

operation Write may yield less dependencies between the transitions of the program.

www.manaraa.com

36 CHAPTER 3. USING PARTIAL ORDERS TO TACKLE STATE EXPLOSION

It is thus preferable to use Compl rather than Write whenever possible. In practice,
this can be done by adding the operation C'ompl to the modeling language and by
using it explicitly in the description of the system, or the verification tool could detect
automatically when a Write operation actually performs a Compl operation.

The second way of refining dependency relations is to define them as being conditional:
instead of defining a dependency relation that holds for all states s in Ag, it is possible
to define a dependency relation for each state individually [KP92a]. Definition 3.1 then
becomes:

Definition 3.17 Let 7 be the set of transitions in a LFCS and D C 7 x 7 x S. The
relation D is a valid conditional dependency relation for the LECS iff for all t,t, € T, s €
S, (ti,ty,8) € D (t; and t, are independent in s) implies that (¢5,¢;,s) € D and that the

two following properties hold in state s:

1. if ¢; is enabled in s and s h, s', then t, is enabled in s iff ¢, is enabled in s’
(independent transitions can neither disable nor enable each other); and

2. if t; and t, are enabled in s, then there is a unique state s’ such that s 2L o and

s g (commutativity of enabled independent transitions).

Definition 3.13 can be adapted in a similar way as follows.

Definition 3.18 Let O = (V,OP) be an object, and Do C OP x OP x V. The relation
Do is a walid conditional dependency relation for O iff for all op;,ops € OP,v € V,
(op1, 0pa, v) & Do (op; and op,y are independent for v) implies that (ops, opy,v) € Do and
that the two following properties hold for v, and for all inputs 2n; and in,:

1. if opy(iny, v) is defined, with op;(iny,v) — (outy,v}), then opy(ing,v) is defined iff
ops(ing, vy) is defined; and

2. if op1(iny,v) and ops(ing, v) are defined, then Jouty, outy, v, v, v" such that:

® 0Op1 (inlav) - (OUtlav’l) and 0p2(7:n2; vll) - (OUtQ; ’U”); and

e 0ps(ing,v) — (outy,vh) and op;(iny, vh) — (out;,v")

(commutativity of operations, with the same outputs).

www.manaraa.com

3.4. DETECTING INDEPENDENCY IN CONCURRENT SYSTEMS 37

Note that, in Definition 3.18, dependency is defined for two operations on the same object
for a particular value v of the object, but for all inputs the operations can have. This
could be also refined in a similar way by considering different possible inputs separately,
etc. For the sake of simplicity, this refinement will not be considered here.

In what follows, two operations on an object O;, 1 < j < m, will be said to be
independent in state s iff they are independent for the value v € V; of the object O; in

state s.

Example 3.19 Consider an object representing a bounded FIFO channel (buffer) of size
N. The domain V of possible values for this object is the set of sequences of messages
{0} UMUM?U...U MY, where M is the set of messages that can be transmitted via
the channel. We define three operations Send, Receive and Length on this object such
that:

e Send(v,v1vy...0,) — (= 010y ...0,v) defined if n < N and v € M,
e Receive(—,vjvy...v,) — (v1,0y...0,) defined if n > 0,

o Length(—, vivy...v,) — (n,v1vy...v,) always defined.

The following tables give respectively a constant and a conditional dependency relation
between these operations. If the condition given in the row op and column op' of the
table is true for the value v € V' considered (n is the number of messages in the channel),
then op and op’ are dependent for v. Otherwise, they are independent. A “-” in the
table represents a condition which is always false (operations always independent).

DEP. | Send | Receive | Length
Send + + +
Receive + + +
Length + + -
DEP. Send Receive Length
Send n<N n=0orn=N | n<N
Receive | n=0o0rn=N n>0 n>0
Length n<N n>0 -

Thanks to conditional dependency, operations that are dependent for some but not all

values v.€ V are no.more considered as being dependent for all values. B

www.manaraa.com

38 CHAPTER 3. USING PARTIAL ORDERS TO TACKLE STATE EXPLOSION

We can still reduce dependencies between operations by simultaneously refining the

operations and by using conditional dependency.

Example 3.20 Consider the previous example. In real protocol models, the operation
Length is often used to test if a channel is empty or full [GP93]. Let us introduce two
new operations Empty and Full defined as follows:

e Empty(—, vivy...v,) — (if (n = 0) then true else false, viv; ... v,) always defined.

o Full(—,vivy...v,) — (if (n = N) then true else false, v1vy...v,) always defined.

A new dependency relation can then be defined:

DEP. Send Receive Length | Empty Full

Send n<N n=0orn=N|n<N | n= n=N-1
Receive | n=0o0rn=N n >0 n>0 n=1 n=N
Length n<N n>0 - - -
Empty n=20 n=1 - — -

Full n=N-1 n=N - - -

Note that, when using a conditional dependency relation, the definition of a trace has

to be slightly modified: two sequences

t1 t; a b tn
S = 81... = 8; — Sip1 — Si42... — Sp
and
t1 t; b a tn 1
S S1... =8 = Si > Siig... S,

in Ag belong to the same “conditional trace [t;...t%,] from state s in Ag”, denoted
[ty ...tn]s, if @ and b are independent in state s;. Conditional traces are thus equivalence
classes of transition sequences originating from the same state in Ag.

It is pointed out in [KP92a] that, maybe surprisingly, a conditional trace does not
necessarily correspond anymore to a partial order of transition occurrences: the set of
sequences in a conditional trace does not always correspond to the set of all linearizations
of a partial order. However, Theorem 3.10 is still satisfied by conditional traces (just
replace in the proof “a and b are independent” by “a and b are independent in s;”).
Since the preservation of this theorem is the main assumption about traces which is
needed by the algorithms we develop in the sequel of this thesis, we will not distinguish

traces from conditional traces unless otherwise specified.

www.manaraa.com

3.4. DETECTING INDEPENDENCY IN CONCURRENT SYSTEMS 39

3.4.3 Summary

A valid conditional dependency relation between the transitions of a LFCS can be defined

from valid conditional dependency relations between operations on objects as follows.

Definition 3.21 Let 7 be the set of transitions in a LFCS. Two transitions t{,t, € 7
are independent in state s € S if:

1. the set of processes that are active for ¢; is disjoint from the set of processes that

are active for t,, and

2. Yop, € used(t;) and Yop, € used(t,), if op; and op, are two operations on the same
object, then op; and op, are independent in s.

Since we assumed in Section 2.1 that, in the command of a transition, an operation that
modifies the value of a given object cannot be followed by any other operation on this
object in the remainder of the sequence of operations defining the command, it is easy
to show that the conditional dependency relation on transitions obtained with the above
definition is a valid one.

In practice, valid dependency relations between all possible operations on each type
of shared (communication) objects are defined as carefully as possible once and for all.
They can be represented, for instance, by tables like the ones presented in the previous
Section. From these tables and Definition 3.21, dependencies between transitions can

then be computed directly.

For the sake of generality, we will only consider in the sequel the (more general) case
where a valid conditional dependency relation between transitions is used, though all the
algorithms that are presented in the following Chapters can also be used with a valid
constant dependency relation between transitions.

In summary, we thus assume in the sequel that, for each type of (communication)
objects, a valid conditional dependency relation between all possible operations on the
object is given. Then, for each LFCS, a valid conditional dependency relation for the
LFCS is obtained by using Definition 3.21 and the valid conditional dependency relations
on operations on objects used by the transitions of the LECS. This valid conditional de-
pendency relation determines the dependencies between all the transitions of the LFCS.

www.manaraa.com

40 CHAPTER 3. USING PARTIAL ORDERS TO TACKLE STATE EXPLOSION

www.manharaa.com

Chapter 4

Persistent Sets

The first technique for computing the set of transitions 7" to consider in a selective search
actually corresponds to a whole family of algorithms [Ove81, Val9l, GW91b| that have
been proposed independently by several researchers. In this Chapter, we show that all
these algorithms actually compute persistent sets, and compare them with each other.
Then we present an algorithm that generalizes the previous ones in a sense that will be
given later.

4.1 Definition

Persistent sets were introduced in [GP93]. Intuitively, a subset T of the set of transitions
enabled in a state s of Ag is called persistent in s if all transitions not in T that are
enabled in s, or in a state reachable from s through transitions not in T', are independent
with all transitions in 7. In other words, whatever one does from s, while remaining
outside of T', does not interact with or affect 7. Formally, we have the following.

Definition 4.1 A set T of transitions enabled in a state s is persistent in s iff, for all

nonempty sequences of transitions

t1 to tn—1 tn
§=81 — 8 — 83... — Sp 7 Spn+1

from s in Ag and including only transitions t; € T, 1 <1 < n, t, is independent in s,

with all transitionsin 7. =

Note that the set of all enabled transitions in a state s is trivially persistent since nothing

1s reachable from s. by transitions that are not in this set.

41 www.manaraa.com

42 CHAPTER 4. PERSISTENT SETS

1 Initialize:Stack is empty; H is empty;

2 push (s¢) onto Stack;

3 Loop: while Stack # 0 do {

4 pop (s) from Stack;

5 if s is NOT already in H then {

6 enter s in H;

7 T = Persistent_Set(s);

8 for all ¢t in T do {

9 s’ = suce(s) after t; /* t is executed */

10 push (s') onto Stack;
11 }

12 }

13 }

Figure 4.1: Persistent-set selective search

Let a persistent-set selective search be a selective search through As which, in each
state s that it reaches, explores only a set T of enabled transitions that is persistent in
s, and that is nonempty if there exist transitions enabled in s. Such an algorithm is
illustrated in Figure 4.1. Let Ar be the reduced state-space explored by a persistent-set
selective search. We now prove that such a search reaches all deadlock states of Ag (cf.
Definition 3.11), i.e., all deadlocks in Ag are also present in Ag.

Lemma 4.2 Let s be a state in Ag, and let d be a deadlock reachable from s in Ag by
a nonempty sequence w of transitions. For all w; € [w]s, let t; denote the first transition
of w;. Let Persistent_Set(s) be a nonempty persistent set in s. Then, at least one of the
transitions t; is in Persistent_Set(s).

Proof:

. t t tn—1 t
Let the sequence w of transitions be t1ty...t,, andlet s = 51 — 59 —> S3... — 5, —

be the sequence of states it goes through in Ag. Assume first that none of the transitions
in w are in Persistent_Set(s). Then, by Definition 4.1 of persistent sets, for all transitions
t;, 1 < j < m, t; is independent in s; with all transitions in Persistent_Set(s). Thus,
by Definition 3.17 of independent transitions, all transitions in Persistent_Set(s) remain
enabled in all states s;, 1' < 5 < n, and in d, which hence cannot be a deadlock. Thus,

some transition of the sequence w from s to d must be in Persistent_Set(s).

www.manaraa.com

4.2. COMPUTING PERSISTENT SETS 43

Let thus 5 be the first transition in w that is in Persistent_Set(s) and let w' be the
sequence tgty...tg 1tgyy .. .1y, 1.€., the sequence w where the transition ¢, is moved to
the first position. By Definition 4.1 of persistent sets, we have that for all 1 < j <k, ¢;
is independent with ¢, in s;. Consequently, by definition of a trace, w' € [w]s, and the

lemma is proved. ®

Theorem 4.3 Let s be a state in Ag, and let d be a deadlock reachable from s in Ag by
a sequence w of transitions. Then, d is also reachable from s in Ag.

Proof:
The proof proceeds by induction on the length of w. For |w| = 0, the result is

immediate. Now, assume the theorem holds for paths (sequences of transitions) of length
n > 0 and let us prove that it holds for paths w of length n + 1.

Assume a deadlock d can be reached from a state s by a path w of length n + 1 in
Ag. For all w; € [w]s, let t; denote the first transition of w;. Let Persistent_Set(s) be
the nonempty persistent set that is selected in s by the algorithm of Figure 4.1, i.e., the
set of transitions that are explored from s in Ar. From Lemma 4.2, we know that at
least one of the transitions ¢; is in Persistent_Set(s). Since ¢; is in Persistent_Set(s), it is
explored from state s and a state from which a path of length n leads to the deadlock d
is reached in Ag. This together with the inductive hypothesis proves the theorem. m

From Theorem 4.3 it is then immediate to conclude that a persistent-set selective

search started in the initial state of Ag will explore all deadlocks in Ag.

4.2 Computing Persistent Sets

Of course, the key element required for the implementation of a persistent-set selective
search is an algorithm for computing persistent sets. Several such algorithms have been
proposed independently by various researchers [Ove81, Val91, GW91b]. In this Chapter,
we present these algorithms, and show that they all compute persistent sets.

All these algorithms infer the persistent sets from the static structure (code) of the
system being verified. They differ by the type of information about the system de-
scription that they use. The aim of these algorithms is to obtain the smallest possible
nonempty persistent sets. Usually, the more information about the system description
the algorithm uses, the smaller the persistent set it produces can be, albeit at the cost of
a higher computational complexity. Note that exploring the smallest number of enabled
transitions at each step of the search is only a heuristics: it does not necessary lead to
the exploration of the smallest number of states. We will come back to this point in
Section 4.8.

www.manaraa.com

44 CHAPTER 4. PERSISTENT SETS

1. Take one transition ¢ that is enabled in s. Let T = {¢}.

2. For all transitions ¢t in T, add to T all transitions t' such that

(a) t and t' are in conflict; or

(b) t and t' are parallel and Jop € used(t), Jop' € used(t') : op and op’ can-be-dependent.

3. Repeat step 2 until a disabled transition is introduced in 7', or until no more tran-
sitions need be added. If there is a disabled transition in 7, return the set of all
enabled transitions (this algorithm was not able to compute a nontrivial persistent
set). Else, return the set T'.

Figure 4.2: Algorithm 1

4.3 Algorithm 1 (Conflicting Transitions)

The simplest algorithm for computing persistent sets in a state s is certainly the one
that merely computes the set of all transitions that are enabled in s. Indeed, as pointed
out in the Section 4.1, this set is trivially persistent in s. Of course, the state space Agr
explored by a selective search using such an algorithm is then exactly the global state

space Ag, which is precisely what we want to avoid.

A simple algorithm for computing nontrivial persistent sets, adapted from [GW91b,
GWO93], is given in Figure 4.2. This algorithm uses the following definitions.

Definition 4.4 Two transitions ¢; and ¢, are said to be in conflictiff (pre(t;)Npre(ty)) #
(0 (there exists a process P; that is active for both ¢; and t5, and such that P; can choose
between ¢; and ¢, from its local state (pre(t;) Npre(ty) N F;)). m

Definition 4.5 Two transitions ¢; and ¢, are said to be paralleliff (active(t;)Nactive(ty)) =
(0 (the set of processes that are active for ¢; is disjoint from the set of processes that are

active for t5). m

In practice, checking whether two transitions are in conflict or parallel is a direct syntactic

check.

Definition 4.6 Two operations op; and op, on a same object can-be-dependent if there

exists asstate s in S such that op; and op, are dependent in s. B

www.manaraa.com

4.3. ALGORITHM 1 (CONFLICTING TRANSITIONS) 45

(Remember that S is the set of states of the LFCS and that S includes all states in Ag.)
In practice, a relation “can-be-dependent” between operations on a given object is easily

obtained from the dependency relation between these operations.

The algorithm of Figure 4.2, let us call it Algorithm 1, starts by taking arbitrarily a
transition t that is enabled in the current state s (step 1). To build a persistent set T'
containing ¢, all transitions that could “interfere” with ¢ have to be included in T'. For
this reason, transitions that are in conflict with ¢, and transitions that are parallel and
that use operations that can-be-dependent with operations used by ¢ are introduced into
T (step 2). Step 2 is repeated until a disabled transition is introduced into T', or until
no more transitions need be added (step 3). Then, if all transitions in 7" are enabled in

s, T is returned. Else, Algorithm 1 was not able to compute a nontrivial persistent set.

We now prove that Algorithm 1 computes persistent sets.

Theorem 4.7 Any set of transitions that is returned by Algorithm 1 is a persistent set
wn the current state s.

Proof:

Let T" be a set of transitions that is returned by Algorithm 1, and let T" denote the set
of transitions that have been considered in step 2 of the algorithm during this run. If T
contains a disabled transition, 7" is the set of all enabled transitions in s, and is trivially
persistent in s. Else, 7" = T, and T contains exclusively enabled transitions.

Suppose that T is not persistent in s. Thus, by Definition 4.1, there exists in Ag a
sequence s = §; LR Sy b, S3... tnt Sn In, Spi1 of transitions tq,19,...,t, € T, such that
t,, is dependent in s, with some transition ¢ € T. Consider the shortest such a sequence.
For this sequence, not only ¢, is dependent in s, with some transition ¢ € 71", but also,
for all 1 < ¢ < n, t; is independent in s; with all transitions in 7". Let us show that such

a sequence cannot exist.

Assume that t and t,, are in parallel. We know from Definition 3.21 that a sufficient
syntactic condition for two transitions t and ¢,, to be independent in a state s,, is that they
are parallel and Vop, € used(t) and Yop, € used(t,), if op; and op, are two operations
on a same object, then op; and op, are independent in s,,. Since t and ¢,, are dependent
in s,, this implies that Jop € used(t), Jop’ € used(t,) : op and op’ are dependent in s,,.
Consequently, op and op’ can-be-dependent according to Definition 4.6. Hence, by step
2.b of the algorithm, ¢,, has to be included in T'. If ¢, is disabled in s, this contradicts
our assumption that 7" contains exclusively enabled transitions. If ¢,, is enabled in s, this
contradicts the assumption that ¢, ¢ T. Therefore, we conclude that ¢ and ¢, are not
parallel.

www.manaraa.com

46 CHAPTER 4. PERSISTENT SETS

Since t and t,, are not parallel, by Definition 4.5, there exists at least one process P,
that is active for both transitions ¢ and t,: P; € (active(t) N active(t,)). Let s(i) denote
the local state of process P; in s (i.e., the ith component of s), and let s, (i) be the local
state of P; in s,. Since t is enabled in s and P; € active(t), s(i) € pre(t). Moreover, since
tn is enabled in s, and P; € active(t,), s,(i) € pre(t,). If t and ¢, are in conflict, ¢, has
to be included in set T' by step 2.a of the algorithm, which yield a contradiction with the
assumption that 7" contains exclusively enabled transitions and ¢,, € T'. Hence, t and t,,
are not in conflict. Since ¢ and ¢, are not in conflict, we know that (pre(t) Npre(t,)) = 0,
and thus s(i) # s,(¢). This means that, after the execution of the sequence tty...¢,_ 1,
process P; has moved from its local state s(7) to its local state s,(7). Hence, t is disabled
in s, (P; is not ready to execute ¢ in s,). Consequently, there exists a transition #,
1 < k < n, such that t is enabled in s; and disabled in s, ;. In other words, t and t; are
dependent in s;. This contradicts the assumption that for all 1 <i¢ < mn, t; ¢ T and ¢; is
independent in s; with all transitions in 7. m

Example 4.8 Consider a system containing two processes A = {ag,a;,as} and B =

{bo, b1}, two objects x and y of type “boolean variable”, and three transitions

ty = (ag, true,z :=1,ay), t3 = (b, true,y:=1,by),
ty = (ay, true,y := 0, ay).

Consider the state s = (ag, b,0,0) € A x B x V, x V,. In state s, both transitions ¢
and t3 are enabled, and a classical search will therefore execute both of them. However,
transition ¢ is not in conflict with any other transition. Moreover, ¢; uses only a Write
operation on object z, which cannot be accessed by transitions that are parallel with ¢,
(object z is “local” to process A). Therefore, running Algorithm 1 with ¢; as the initial
enabled transition taken in step 1 of the algorithm returns {¢;}. Thus, a persistent-set

selective search using Algorithm 1 may only execute transition ¢; from state s. m

Step 1 of Algorithm 1 is nondeterministic: a transition ¢ that is enabled in s is arbi-
trarily chosen to start the persistent set construction. For a given state s, let Algo,(t)
denote the persistent set that is returned by Algorithm 1 when ¢ is the enabled transition
chosen in step 1 of the algorithm. Assume that, from any transition ¢, it takes O(1) time
to obtain a transition t' satisfying either condition 2.a or 2.b.! Since Algorithm 1 stops
(step 3) as soon as a disabled transition is introduced in T', step 2 can be executed at most
lenabled(s)| times, where |enabled(s)| denotes the number of transitions that are enabled
in s. For the same reason, each time step 2 is executed, at most |enabled(s)| transitions ¢’

!This can be done by nsing appropriate data structures to encode the relationships between transitions
according.to conditions:2.a and 2.b.

www.manaraa.com

4.4. ALGORITHM 2 (OVERMAN’S ALGORITHM) 47

can be checked and be added to set T. Hence, the worst-case time complexity of Algo;(t)
is O(|enabled(s)|?).

Let PSi(s) denote the set of persistent sets in a state s that can be computed by
Algorithm 1: PSi(s) = {Algo(t)|t € enabled(s)}. In practice, for a given state s, it
may be useful to run Algorithm 1 several times with different initial enabled transitions
(step 1) in order to compute several persistent sets in s, and then to choose the smallest
persistent set that has been obtained. However, given the symmetry of the relation
between ¢ and ¢ in step 2 of Algorithm 1, it is easy to see that, if Algo,(t) did not

encounter any disabled transitions, we have
Vi' € Algoy(t) : Algo,(t') = Algoy(t).

Hence, once Algo;(t) has been computed, it is useless to compute Algo;(t') with ¢’ €
Algoy(t), i.e., to rerun Algorithm 1 with ¢ as the starting transition, when the compu-
tation of Algo;(t) did not encounter any disabled transitions. Moreover, we also know
that the computation of Algo;(t') with t' ¢ Algo,(t) will not consider again transitions in
Algoy(t). Therefore, the worst-case time complexity to compute the smallest persistent

set in PSi(s), let us denote it by min(PS;(s)), is also O(|enabled(s)|?).

Note 4.9 Algorithm 1 is equivalent to an algorithm that appeared in [GW91b, GW93].
In [GWI91b, GW93|, concurrent systems were represented by a set of communicating
automata, i.e., a parallel composition of sequential processes (no objects). For the par-
ticular model and definition of dependency used in [GW91b, GW93], two transitions
that are parallel cannot be dependent, and step 2 of Algorithm 1 reduces to point 2.a
only, point 2.b can be deleted. It is pointed out in [GW91b, GW93| that Algorithm 1
can be implemented in such a way that its time complexity is the same as the one of
the computation of the set of all the transitions that are enabled in s, by interleaving
both computations, instead of computing first the set of enabled transitions as implic-
itly assumed in the above discussion. Finally note that the procedure given in page 420
of [Pel93] is similar to Algorithm 1. m

4.4 Algorithm 2 (Overman’s Algorithm)

A more elaborate algorithm for computing nontrivial persistent sets is given in Fig-
ure 4.3. Let us call it Algorithm 2. This algorithm is an adaptation of an algorithm
that appeared in [Ove81]. The algorithm presented in [Ove81] (page 105) only con-
sidered concurrent systems composed of “non-cycling” (no loops) and “non-branching”
processes communicating exclusively via shared variables. Thus, the correspondence be-
tween Algorithm 2 and the one of [Ove81] might seem rather loose. However, the basic

algorithmic idea is the same.

www.manaraa.com

48 CHAPTER 4. PERSISTENT SETS

1. Take one transition ¢ that is enabled in s. Let P = active(t).

2. For all processes P; in P, for all transitions ¢ such that s(i) € pre(t), add to P all
processes P; such that

(a) P; € active(t); or

(b) P; € active(t') for some t' such that ¢ and ¢’ are parallel and
Jdop € used(t),Jop' € used(t') : op and op’ can-be-dependent.

3. Repeat step 2 until no more processes need be added. Then, return all transitions ¢
such that active(t) C P and t is enabled in s.

Figure 4.3: Algorithm 2

Unlike Algorithm 1, Algorithm 2 can consider disabled transitions, and uses informa-
tion about processes. More precisely, it uses information about which transitions can be
accessed by process P; from its current local state s(i). Algorithm 2 starts by considering
the set P of processes that are active for one given enabled transition (step 1). Then,
for all transitions ¢ “originating from” the current local state s(i) of a process P; in set
P, i.e., for all transitions ¢ such that s(i) € pre(t), all other processes that are active for
t, or that are active for a transition ¢’ that is parallel and that uses operations that can-
be-dependent with operations used by t, are added to set P (step 2). Step 2 is repeated
until no more processes need be added to P (step 3). Finally, all enabled transitions for
which processes in P are active are returned.

We now prove that Algorithm 2 computes persistent sets.

Theorem 4.10 Any set of transitions that is returned by Algorithm 2 1s a persistent set
i the current state s.

Proof:

Let T be a set of transitions that is returned by Algorithm 2, and let P denote the
set of processes that have been considered in step 2 of the algorithm during this run.

The proof is by contradiction. Suppose that T is not persistent in s. Thus, by

Definition 4.1, there exists in Ag a sequence s = s LN Sy b, S3... tt Sn tn, Spy1 of
transitions ¢y, %,,...,t, € T, such that ¢, is dependent in s, with some transition t € T'.

Consider the shortest such a sequence. For this sequence, not only ¢, is dependent in s,
with some transition ¢ € T, but also, for all 1 < i < n, t; is independent in s; with all

transitions in' 7'. Let us show that such a sequence cannot exist.

www.manaraa.com

4.4. ALGORITHM 2 (OVERMAN’S ALGORITHM) 49

Assume that t and t,, are in parallel. We know from Definition 3.21 that a sufficient
syntactic condition for two transitions t and ¢,, to be independent in a state s,, is that they
are parallel and Vop, € used(t) and Yop, € used(t,), if op; and op, are two operations
on a same object, then op,; and op, are independent in s,,. Since t and ¢,, are dependent
in s,, this implies that Jop € used(t), Jop’ € used(t,) : op and op’ are dependent in s,,.
Consequently, op and op’ can-be-dependent according to Definition 4.6. Hence, by step
2.b of the algorithm, we have active(t,) C P.

Now, assume that t and t, are not parallel. By Definition 4.5, there exists at least
one process P; that is active for both transitions ¢t and t,: P; € (active(t) N active(t,)).
Note that, since t € T, active(t) C P, and thus P; € P. Let s(i) denote the local state
of process P; in s (i.e., the ith component of s), and let s,(¢) be the local state of P; in

. Since t, is enabled in s, and P; € active(t,), s,(i) € pre(t,). If s(i) = s,(i), by step
2 a of the algorithm, we have again active(t,) C P.

Consider the case where s(i) # s,,(4). Since tisin T, ¢ is enabled in s, and s(i) € pre(t).
Since s(i) # s,(7), t is disabled in s, (P; is not ready to execute t in s,). Consequently,
there exists a transition t;, 1 < k < n, such that ¢ is enabled in s; and disabled in sj.4.
In other words, t and t;, are dependent in s;. This contradicts the assumption that for
all1 <i<mn, t; €T and t; is independent in s; with all transitions in 7.

In summary, we have active(t,) C P. If t,, is enabled in s, ¢, is in the set T returned
by the algorithm, which contradicts the assumption that ¢, € T. Therefore, ¢, is disabled
in s.

Since t, is disabled in s and enabled in s, there exists a transition t;, 1 < k < n, such
that ¢, is disabled in s; and enabled in siy;. In other words, ¢, and ¢; are dependent in
sg. If, for all transitions ¢;, 1 < I < n, (active(t;) Nactive(t,)) = 0, we have s(i) € pre(t,)
for all P; € active(t,), and active(ty) C P by step 2.b of the algorithm (1). Else, there
exists a transition ¢, 1 < I < n, such that P, € active(t,) and P; € active(t;). Let t,
be the first such transition in the sequence tity ...t 1. We have s(i) = s,(7) since t; is
the first transition in the sequence tt,...t,_; for which P; is active. Since t; is enabled
in s, (7)) € pre(t;). Since active(t,) C P we have P; € P, and active(t;) C P by step
2.a of the algorithm (2). In summary, in both cases (1) and (2), there exists a transition
tm, 1 < m < n such that active(t,,) C P. If t,, is enabled in s, it is returned by the
algorithm and is thus in 7', which contradicts the assumption that t,, € T. Therefore,
t,, 1s disabled in s.

By repeating the same reasoning, one comes to the conclusion that active(t;) C P.
Since t; is enabled in s, this means that ¢; € T, which contradicts the assumption that
tiyeeenln Z L. A

Example 4.11 Consider a system containing two processes A = {aog, a1, a9,a3} and

www.manaraa.com

50 CHAPTER 4. PERSISTENT SETS

B = {by, b1}, two objects = and y of type “boolean variable”, and four transitions

t1 = (ag, true,z :=1,ay), ty = (b, true,y :=1,by),
ty = (ag,x = 1,2 := 0, a3),
ty = (ay, true,y := 0, ay).

Consider the state s = (ag, by, 0,0) € A x B xV, x V. In state s, both transitions ¢; and
t4 are enabled, and a classical search will therefore execute both of them. Since transition
ty is in conflict with transition ¢, which is disabled in s, Algo;(t;) = {t;,t4}. However,
Algorithm 2 starting with ¢; as the initial enabled transition taken in step 1 introduces
process A in set P. Then, it checks in step 2 if other processes have to be added to P.
Since the only process that is active for the two transitions t; and t, originating from a,
is A, and since these two transitions only use object x, which is not used by transitions
that are parallel with ¢; or ¢y, process B does not need be included in P. Therefore,
Algorithm 2 returns {¢;}, and a persistent-set selective search using Algorithm 2 may
only execute transition t; from state s. m

As in Algorithm 1, step 1 of Algorithm 2 is nondeterministic. For a given state s, let
Algos(t) denote the persistent set that is returned by Algorithm 2 when ¢ is the enabled
transition chosen in step 1 of the algorithm. Step 2 of Algorithm 2 can be executed at
most |P| times, where |P| is the number of processes in the system. Each time step 2
is executed, at most |P| processes P; can be added to set P. If we assume that, from
any process P;, it takes O(1) time to obtain a process P; satisfying either condition 2.a
or 2.b%, the worst-case time complexity for executing step 2 of Algorithm 2 is O(|P|?),
and, assuming |enabled(s)| smaller than |P|?, the worst-case time complexity of Algos(t)

is also O(|P|?).
Let PSy(s) denote the set of persistent sets in a state s that can be computed by
Algorithm 2: PSy(s) = {Algos(t)|t € enabled(s)}. Tt is easy to see that

Vi' € Algoy(t) = Algoy(t') C Algoy(t).

Therefore, it may be useful to rerun Algorithm 2 with transitions ¢’ taken from a persistent
set already obtained by a previous run, to determine if this persistent set contains another

smaller persistent set. We will come back to this issue at the end of the next Section.

2This can be done by using appropriate data structures to encode the relationships between processes
according to conditions 2:a and 2:b. For instance, for all possible local states s(i) of each process P;,
a table that tells which processes have to be included in set P when P; is in its local state s(i) can be
computed at compile time.

www.manaraa.com

4.5. ALGORITHM 3 (STUBBORN SETS) 51

4.5 Algorithm 3 (Stubborn Sets)

4.5.1 Basic Idea

Yet a more elaborate technique for computing persistent sets is the stubborn set technique
of Valmari [Val91]. Unlike Algorithm 2, the stubborn set technique also uses information
about the internal structure of the processes of the system. Before defining stubborn
sets, we need the following definition [Val91].

Definition 4.12 Two transitions t; and ty do-not-accord with each other if there exists
a state s in S such that ¢; and t, are enabled in s and are dependent in s. ®

Two transitions do-not-accord with each other if there exists a state where they are both

enabled and dependent. We can define a similar relation on operations on objects.

Definition 4.13 Two operations op; and op; on the same object do-not-accord with
each other if there exists a state s in S such that op; and op, are defined in s and are

dependent in s. &

This definition is slightly weaker than Definition 4.6, i.e., the relation do-not-accord is
included in the relation can-be-dependent. Indeed, two operations that do-not-accord
can-be-dependent, while the converse does not hold, since two operations that are de-
pendent in a state s need not be both defined in that state. In practice, a relation
“do-not-accord” between operations on a given object is easily obtained from the depen-

dency relation between these operations.

We now introduce a new definition that will help us to capture the basic algorithmic
idea of stubborn sets without referring to a particular model for representing concurrent

systems.

Definition 4.14 Let ¢ be a transition that is disabled in a state s. A necessary enabling
set for t in s, denoted NES(t, s), is a set of transitions such that, for all states s’ such
that ¢ is enabled in s', for all sequences w of transitions from s to s’ in Ag, w contains
at least one transition of NES(t,s). m

In other words, a necessary enabling set NES(t,s) for ¢ in s is a set of transitions such
that ¢ cannot become enabled (in some successor s’ of s in Ag) before at least one

transition in NES(t, s) is executed.

Stubborn sets® can then be defined as follows (adapted from [Val91]; see also Note 4.17
below).

3“Strong stubborn sets” according to Valmari’s terminology. “Weak stubborn sets” will be considered
later.

www.manaraa.com

52 CHAPTER 4. PERSISTENT SETS

Definition 4.15 A set T, of transitions is a stubborn set in a state s if T contains at
least one enabled transition, and if for all transitions t € T, the two following conditions

hold:

1. if ¢ is disabled in s, then all transitions in one necessary enabling set NES(t, s) for

tin s are also in T§;

2. if t is enabled in s, then all transitions ¢’ that do-not-accord with ¢ are also in 7.
|

A stubborn set T in a state s is thus a set of transitions. Transitions in this set can be
either enabled or disabled in s. Let T be the set of all transitions in 7T, that are enabled
in s. By the definition of T, T is nonempty. We now prove that 7' is a persistent set in
s.

Theorem 4.16 Let T be the set of all transitions in a stubborn set Ty in state s that are
enabled in s. Then, T s a persistent set in s.

Proof:
The proof is by contradiction. Suppose that T is not persistent in s. Thus, by

Definition 4.1, there exists in Ag a sequence s = s LN Sy b, S3... tt Sn, tn, Spy1 of
transitions ty,%s,...,t, & T, such that ¢, is dependent in s, with some transition t € T.
Consider the shortest such a sequence. For this sequence, not only ¢,, is dependent in s,
with some transition ¢ € T, but also, for all 1 < i < n, t; is independent in s; with all

transitions in 7". Let us show that such a sequence cannot exist.

Sincet € T, t € T, and t is enabled in s. Since, for all 1 < i < n, t; is independent in
s; with all transitions in 7', including ¢, ¢t remains enabled in all states s;,;. Since ¢t and ¢,
are both enabled in s, and are dependent in s,,, they do-not-accord (cf. Definition 4.12),
and t, is in Ty by point 2 of Definition 4.15.

If ¢, is enabled in s, then we have ¢, € T, which contradicts the assumption that
ti,...,t, € T. Thus, t, is disabled in s. Since t, is enabled in s,, there exists a
nonempty necessary enabling set NES(t,, s) for ¢, in s, and (at least) one transition t;,
1 <j<mnisin NES(t,,s) (cf. Definition 4.14). By point 1 of Definition 4.15, ¢, is
in T,. Again, if ¢; is enabled in s, then ¢; € T, which contradicts the assumption that
t1,...,tn € T. Thus, t; is disabled in s. By repeating the same reasoning, one comes to
the conclusion that ¢; is in T;. Since t¢; is enabled in s, this means that t; € T, which
contradicts the assumption that ¢,...,¢t, €T. &

Stubborn sets can thus be used to compute persistent sets: by taking all transitions

in a stubborn set 7, that are enabled in s, one obtains a persistent set.

www.manaraa.com

4.5. ALGORITHM 3 (STUBBORN SETS) 53

Note 4.17 The basic algorithmic idea of stubborn sets is captured by Definition 4.15
introduced in this Section. This definition is general, abstract, in the sense that it is inde-
pendent of any particular model. In contrast, definitions of stubborn sets that appeared
in the literature were tailored for particular models like Variable/Transition Systems,
Elementary Nets, Place/Transition Nets, Coloured Petri Nets, etc (e.g., see [Val91]). All
these particular definitions can be viewed as “implementations” of the general definition
we have given in this Section. Algorithm 3 that will be presented in the next Section is
such an “implementation” of Definition 4.15 for systems represented by LFCS’s. m

4.5.2 Algorithm

From the general definition of stubborn sets given above, it is possible to obtain an algo-
rithm for computing stubborn sets T for systems represented by LFCS’s. To obtain such
an “implementation”, we need to give a practical way to compute (and thus approximate)
the concepts that appear in Definition 4.15.

The resulting algorithm, Algorithm 3, is presented in Figure 4.4. Algorithm 3 starts by
taking a transition ¢ that is enabled in s (step 1). To compute a stubborn set containing
t, the two rules 2.a and 2.b are applied repeatedly to all transitions introduced in T (step
2) until no more transitions need be added (step 3). Then, all the transitions in the T}

that are enabled in s are returned, the other transitions in 7T are discarded.

To prove that Algorithm 3 returns persistent sets in s, thanks to Theorem 4.16, it is
sufficient to show that the sets T, that it computes are stubborn sets in s according to
Definition 4.15. To show this, we have to prove that the rules 2.a and 2.b are safe ap-
proximations of respectively point 1 and 2 of Definition 4.15, i.e., that enough transitions
are included in set T by Algorithm 3 to make it a stubborn set in s .

Theorem 4.18 All sets T, that are computed by Algorithm 3 are stubborn sets in s.

Proof:
Let T be a set of transitions that is computed by Algorithm 3. Let us show that T

is a stubborn set in s.

Consider a transition ¢t € T that is disabled in s. With our LFCS model, a transition
t=(L,G,C, L) is disabled in a state s if either there is a process P; € active(t) such that
s(j) # (L N P;) (process P; that is active for ¢ is not ready to execute transition ¢ from
its current local state s(j)), or there is a condition ¢; in the conjunction G that evaluates
to false in s. In the first case, the set of all transitions ¢’ such that (pre(t) N P;) € post(t')
is a necessary enabling set NES(t, s) for ¢ in s (the execution of such a transition ¢’ is

necessary, t0 make # enabled). In the second case, the set of all transitions ¢ that use

www.manaraa.com

54 CHAPTER 4. PERSISTENT SETS

1. Take one transition ¢ that is enabled in s. Let T = {¢}.

2. For all transitions t in T:

(a) if t is disabled in s, either:
i. choose a process P; € active(t) such that s(j) # (pre(t) N P;); then, add to T,
all transitions t' such that (pre(t) N P;) € post(t').

ii. choose a condition c¢; in the guard G of ¢t that evaluates to false in s; then,
for all operations op used by t to evaluate c¢;, add to T, all transitions ¢’ such
that Jop' € used(t') : op and op’ can-be-dependent.

(b) if ¢ is enabled in s, add to T; all transitions ¢’ such that
i. t and t' are in conflict; or

ii. ¢ and ¢’ are parallel and Jop € used(t), Jop' € used(t') : op and op’ do-not-accord.

3. Repeat step 2 until no more transitions need be added. Then, return all transitions
in T, that are enabled in s (transitions in T that are disabled in s are discarded).

Figure 4.4: Algorithm 3

an operation op’ that can-be-dependent with an operation op used to evaluate ¢; is a
necessary enabling set NES(t, s) for ¢t in s (only the execution of such an operation op’
can change the output returned by op, and hence the truth value of ¢;).

Consider a transition t € T, that is enabled in s. We have to show that the set of
all transitions ¢’ that are added to T, by step 2.b of Algorithm 3 includes all transitions
that do-not-accord with ¢. Consider a transition ¢’ such that ¢ and #' do-not-accord. Let
us show that ¢’ is in 7.

If ¢t and ¢ are not parallel, this implies by Definition 4.5 that at least one process
is active for both transitions ¢ and t': P; € (active(t) N active(t')). If ¢ and t' are in
conflict, #' is added to T, by step 2.b.i. If ¢t and ' are not in conflict, we know that
(pre(t) Npre(t')) = 0. Therefore, (pre(t) N P;) # (pre(t') N P;), and it is impossible for
t and ¢’ to be simultaneously enabled (process P; cannot be in two different local states
(pre(t) N P;) and (pre(t') N P;) at the same time), which contradicts the assumption that
t and t' do-not-accord.

Assume now that ¢ and t' are parallel. Since ¢ and #' do-not-accord, there exists a
state s’ € S where t and t' are enabled in s’ and are dependent in s’, by Definition 4.12.
Moreover, we know from Definition 3.21 that a sufficient syntactic condition for two
transitions ¢ and ¢’ to be independent in a state s’ is that they are parallel and Yop, €

used(t) and Yop; € wsed(t'), if op; and op, are two operations on a same object, then

www.manaraa.com

4.5. ALGORITHM 3 (STUBBORN SETS) 55

op1 and op,y are independent in s,. Since ¢t and t' are dependent in s, this implies that
Jop € used(t), Jop' € used(t') : op and op' are dependent in s'. Moreover, since ¢t and #'
are enabled in s’, this implies that both op and op’ are defined in s’. Consequently, op and
op’ do-not-accord according to Definition 4.13. Hence, by step 2.b.ii of the algorithm, ¢’
is included in T,. m

Example 4.19 Consider a system containing two processes A = {ag, a;,a,} and B =

{bo, b1}, two objects x and y of type “boolean variable”, and four transitions

ty = (ag, true,z :=1,ay), t3 = (bo,true,y:=1,by),
ty = (ay,true,y := 0,ay), t4 = (by,true,x:=0,bp).

Consider the state s = (a1, b1,0,0) € Ax B xV, x V. In state s, both transitions ¢, and
t4 are enabled. As an exercice, the reader can compute what the persistent sets that can
be returned by Algorithms 1 and 2 are. Actually, Algo;(ty) = Algoy(ts) = Algos(ty) =
Algos(ts) = {ts,t4}. In other words, neither Algorithm 1, nor Algorithm 2 are able to
return a nontrivial persistent set for this example. Let us investigate how Algorithm 3,
in contrast, is able to determine that {t4} is a persistent set in s. Starting with ¢, as
the initial enabled transition taken in step 1, Algorithm 3 has to include transition ¢; in
Ts by step 2.b since both t4 and ¢; use a Write operation on object z, and since two
Write operations do-not-accord (they are always defined and dependent; cf. Sections 2.1
and 3.4). Since t; is disabled in s, and since the only condition for which it is disabled
in s is that process A, which is active for it, is not ready to execute it, step 2.b.i adds
to Ty all transitions ¢’ such that ag € post(t'). There are no such transitions, and the
computation of Ty stops. Hence, Algos(ts) = {t4}, and a persistent-set selective search
using Algorithm 3 may only execute transition t, from state s. m

As in Algorithms 1 and 2, step 1 of Algorithm 3 is nondeterministic. For a given
state s, let Algos(t) denote a persistent set that is returned by Algorithm 3 when ¢ is the
enabled transition chosen in step 1 of the algorithm. During the computation of Algos(t),
Step 2 of Algorithm 3 can be executed at most |7| times, where |7 | is the number of
transitions in the system. Fach time step 2 is executed, at most |7| transitions ¢ can be
checked and be added to set T,. If we assume that, from any transition ¢, it takes O(1)
time to obtain a transition ¢’ satisfying either condition 2.a or 2.b, the worst-case time
complexity of Algos(t) is O(|T|*).

Note that point 1 of Definition 4.15, and hence step 2.a of Algorithm 3, are also
nondeterministic: _one can choose arbitrarily any necessary enabling set NES(t, s) for t
in s, and then add to T all transitions in this set NES(t,s). Therefore, the choice of
a NES(t;s) influences the set of transitions that have to be added to Ty, and thus the

www.manaraa.com

56 CHAPTER 4. PERSISTENT SETS

size of Ty and the number of enabled transitions it contains. A priori, it is not possible
to predict what choice will yield the smallest persistent set. In other words, executing
Algorithm 3 several times with the same starting enabled transition taken in step 1 of
the algorithm may return different persistent sets, if different choices of NES(t, s) are

made for disabled transitions in Tj.

To avoid redundant work during successive executions of Algorithm 3 when searching
for a minimal persistent set, a systematic approach, investigated in [Val88a, Val88b],
consists in viewing each transition in 7 as a vertex of a directed graph, and each relation
of the form “if ¢ is in T, then add ¢ to T,” according to step 2.a or 2.b as an edge
from vertex ¢ to vertex t'. The problem of finding the smallest persistent set that can
be computed by Algorithm 3 is then reduced to a graph-theoretic problem. In [Val88b],
it is shown that the problem can be solved in O(|T|?|). If the nondeterminism of step
2.a of Algorithm 3 is resolved in a unique way for each disabled transition, then the time

complexity becomes linear in the number of edges in the graph, i.e., O(|7|?|) [Val88a].*
Interestingly, it can be shown that the same technique can be applied to find the

smallest persistent set that can be computed by Algorithm 2 (since the only nondeter-
ministic step in Algorithm 2 is step 1): each process is viewed as a vertex of a directed
graph, and each relation “if P; is in P, then add P; to P” according to step 2.a or 2.b of
Algorithm 2 corresponds to an edge from vertex P; to vertex P;. The time complexity
for computing the smallest persistent set in PSs(s), i.e., the set of persistent sets that
can be computed by Algorithm 2, is thus O(|P|?).

4.6 Comparison

In this Section, we compare the persistent sets that can be computed by the three algo-

rithms presented in the previous Sections.

For a given state s, let Algo;(t) denote the persistent set that is returned by Algorithm i
when t is the enabled transition chosen in step 1 of Algorithm i, for i € {1,2}. We can
prove the following.

Theorem 4.20 For all transitions t that are enabled in a state s, we have Algoy(t) C
Algoy (t).

4T for all transitions ¢, the @mamber of transitions ¢’ that satisfy either point 1 or point 2 of Def-
inition 4.15 is bounded by a constant C < |7, the time complexity of the two algorithms becomes
O(C|T|?).and O(C|T |) respectively, as assumed in [Val88a, Val88b].

www.manaraa.com

4.6. COMPARISON 57

Proof:

If Algos(t) is the set of all transitions that are enabled in s, the result is immediate.
Thus, assume this is not the case. This means that the set T" of transitions constructed
in step 2 of Algorithm 1 during the computation of Algo;(t) contains only enabled tran-
sitions, and we have Algo,(t) = T. Let P denote the set of processes that have been
considered in step 2 of Algorithm 2 during the computation of Algo,(t). Let T? be the
set {t |3AP, € P : s(i) € pre(t)}. By construction, Algos(t) is the set of all transitions in
T? that are enabled in s. We now prove that, for all transitions ¢t € T, if ¢ € T?, then all
transitions ¢’ that are added to T? because of ¢ by step 2 of Algorithm 2 are in 7.

If ¢ is added to T? because of ¢ by step 2.a of Algorithm 2, this means that there
exists a process P; € P such that P; € active(t) and s(j) € pre(t'). Since t is enabled
in s, s(j) € pre(t), and ¢ and t' are in conflict. Consequently, ¢ is in T' by step 2.a of
Algorithm 1.

If ¢' is added to T? because of t by step 2.b of Algorithm 2, this means that there
exists a process P; € P such that s(j) € pre(t') and P; € active(t") for some t” such that
t and t" are parallel and Jop € used(t), Jop’ € used(t") : op and op' can-be-dependent.
Consequently, by step 2.b of Algorithm 1, ¢ is in T". Hence, t" is enabled in s, and we
have s(j) € pre(t”). This implies that ¢” is in T?. This also implies that ¢” and ¢' are in
conflict, and ¢’ is in T by step 2.a of Algorithm 1.

We have just proved that, for all transitions ¢t € T, if ¢t € T2, then all transitions that
are added to T? because of ¢ by step 2 of Algorithm 2 are in T. Consequently, T> C T,
and thus Algoy(t) C Algo(t). m

Thus, the persistent set Algoy(t) returned by Algorithm 2 is always a subset (not
necessarily proper) of the persistent set Algo;(t) returned by Algorithm 1.

A similar relation holds between Algorithm 2 and 3, except that, since step 2.a of Al-
gorithm 3 is nondeterministic, the formulation of the theorem has to be slightly modified.

Theorem 4.21 For all transitions t that are enabled in a state s, there exists an execu-
tion of Algorithm 3 that returns a persistent set Algos(t) such that Algoz(t) C Algos(t).

Proof:

Let P denote the set of processes that have been considered in step 2 of Algorithm 2
during the computation of Algoy(t). Let T? be the set {t [3P, € P : s(i) € pre(t)}. By
construction, Algo,(t) is the set of all transitions in T? that are enabled in s. If T, is
a_stubborn set constructed by Algorithm 3 during the computation of a persistent set
Algos(t), let T? denote the transitions ¢ in T, such that 3P : s(i) € pre(t). In other

words, T contains.all transitions (enabled or disabled) in Ty that are originating from

www.manaraa.com

58 CHAPTER 4. PERSISTENT SETS

the current local state of some process (not necessarily in P). Note that all transitions
in T that are enabled in s are in T. Moreover, transitions that are in T, and in T2 are
in T2. To prove the theorem, we show that there exists a run of Algorithm 3 such that
all enabled transitions in T2 are in T2. This amounts to constructing a set T such that,
for all transitions ¢ € T2, if t € T?, then all enabled transitions that are added to T2
because of ¢ by (possibly several applications of) step 2 of Algorithm 3 are in T2

Consider a transition ¢t € T that is enabled in s. Since ¢ is in T2, we know active(t) C
P. If t' is added to T, because of ¢t by step 2.b.i of Algorithm 3, this means that ¢ and
t" are in conflict. Hence, there exists a process P; active for ¢ such that s(i) € pre(t').
Since P; € P, t' is in T?, by definition of T?. Moreover, since ¢’ is in both T, and T?, it
is also in T2.

If t' is added to T, because of t by step 2.b.ii of Algorithm 3, this means that ¢ and
t" are parallel and Jop € used(t), Jop' € used(t') : op and op’ do-not-accord. Thus, op
and op’ can-be-dependent, since the relation do-not-accord is included in the relation
can-be-dependent. Consequently, by step 2.b of Algorithm 2, the processes in active(t')
are in P. If there is a process P; such that s(i) € pre(t'), ¢' is in T?. If for all processes
P; in active(t'), s(i) & pre(t'), t' is disabled in s and is neither in T2, nor in T7. Let P,
be one of the processes active for t'. By applying repeatedly step 2.a.i of Algorithm 3
and choosing P;, a transition ¢” in T? may eventually be included in set T. In this case,
intermediate transitions ¢”’ that are included in set T, during these successive applications
of step 2.a.i are all disabled in s, since they are not in T2 (by construction), and hence

process P;, which is active for all these transitions, is not ready to execute any of them:
s(i) & pre(t"). Since t" is in both Ty and T2, it is also in T7.

Consider a transition ¢ € T? that is disabled in s. Since ¢ is in T2, we know active(t) C
P. Two cases are possible. If there exists a process P; € active(t) such that s(i) #
(pre(t) N P;), one can choose process P; in step 2.a.i of Algorithm 3 and include all
transitions ' such that (pre(t) N P;) € post(t'). Consider such a transition t'. If s(i) €
pre(t'), t' is in T? since P; € P (and also in T2, since ' € Ty). Else, ¢’ is disabled in s
(process P;, which is active for ¢, is not ready to execute ') and is neither in T2, nor in
T3. By applying repeatedly step 2.a.i of Algorithm 3 and choosing P;, a transition t” in
T? may eventually be included in set T,. In this case, intermediate transitions " that
are included in set Ty during these successive applications of step 2.a.i are all disabled in
s, since they are not in T? (by construction), and hence process P;, which is active for
all these transitions, is not ready to execute any of them: s(i) & pre(t"). Since ¢’ is in
both T, and T2, it is also in T?2.

Now consider the second possible case where, for all processes P; active for ¢, we have
s(i) = (pre(t) N P;). Since t is disabled in s, there exists a condition ¢; in the guard G of

t that evaluates to false in s. Such a condition ¢; is chosen in step 2.a.ii of Algorithm 3,

www.manaraa.com

4.6. COMPARISON 59

and all transitions ' such that Jop’ € used(t') : op and op' can-be-dependent, where op
is an operation used by ¢ to evaluate ¢;, are added to T,. Consider such a transition
t'. If t and t' are parallel, by step 2.b of Algorithm 2, all processes in active(t') are in
P. If there is a process P; such that s(j) € pre(t'), ¢ is in T? (and in T2). If for all
processes P; in active(t'), s(j) & pre(t'), t’ is disabled in s and is neither in T2, nor in
T?. Let P; be one of the processes active for ¢'. By applying repeatedly step 2.a.i of
Algorithm 3 and choosing P;, a transition ¢ in 72 may eventually be included in set 7.
In this case, intermediate transitions ¢’ that are included in set T, during these successive
applications of step 2.a.i are all disabled in s, since they are not in T? (by construction),

and hence process P;, which is active for all these transitions, is not ready to execute any
of them: s(j) & pre(t"). Since t" is in both T, and T?

2 it is also in T?.

Finally, if ¢ and ¢’ are not parallel, there exists a process P; active for both ¢t and t'.
If s(j) € pre(t'), t' is in T?, and then is also in T?. Else, by applying repeatedly step
2.a.i of Algorithm 3 and choosing P;, a transition ¢” in 72 may eventually be included in
set T,. In this case, intermediate transitions ¢ that are included in set T, during these
successive applications of step 2.a.i are all disabled in s, since they are not in T? (by
construction), and hence process P;, which is active for all these transitions, is not ready
to execute any of them: s(j) & pre(t”). Since ¢ is in both Ty and T?

2 it is also in T7.

In conclusion, we have build a set T such that, for all transitions ¢t € T2, ift € T2, then
all enabled transitions that are added to T because of ¢ by (possibly several applications
of) step 2 of Algorithm 3 are in T?. Consequently, there exists an execution of Algorithm 3
that returns a persistent set Algos(t) such that Algos(t) C Algo,(t). m

It follows from the two previous theorems that the smallest persistent set that can be
computed by Algorithm 7 can also be computed by Algorithm j with 7 < 7, while the

converse is not true, as it has been shown with the examples in the previous Sections.

So far, we have presented three different algorithms, which have been developed in-
dependently, and we have shown that they all compute persistent sets. Persistent sets
are thus a key notion underlying these algorithms though, maybe surprisingly, none
of [Ove81, GW91b, Val91] pointed this out.

It should be emphasized that persistent sets are really what we want to compute, while
the algorithms that we have presented (including the notion of stubborn sets) rather tell
us how to compute persistent sets. Making this distinction between “what” and “how” is
important. Indeed, once one clearly knows what one wants to obtain, i.e., persistent sets,
it is then possible to consider the problem of computing persistent sets from a broader
perspective. More precisely, it now makes sense to ask if there exist better algorithms
that could compute yet smaller persistent sets than the most elaborate technique we have

presented so far, i.e., the stubborn set technique.

www.manaraa.com

60 CHAPTER 4. PERSISTENT SETS

The answer to this question is positive, and a new more refined algorithm to compute
smaller persistent sets is introduced in the next Section. (The key contributions of the

next Section appeared in [GP93].)

4.7 Algorithm 4 (Conditional Stubborn Sets)

4.7.1 Basic Idea

The only information about the current state that has been used in all the previous
algorithms for computing persistent sets is whether transitions are enabled or disabled
in that state. These algorithms did not use any other information about the current
state itself. Indeed, definitions like “can-be-dependent” or “do-not-accord” used by these
algorithms were defined with respect to all possible states in S. Therefore, using these

definitions can produce unnecessarily large persistent sets.

In this Section, we show how to improve the previous algorithms by using a less restric-
tive approach. This approach consists in considering only the states that are reachable

from the current state s and in taking advantage of conditional dependency.

We now give a new definition inspired by the stubborn set definition 4.15 that can be
used to compute smaller persistent sets. Unlike Definition 4.15, the new definition takes

advantage of conditional dependency [GP93].

Definition 4.22 A set T, of transitions is a conditional stubborn set in state s if T,
contains at least one enabled transition, and if for all transitions ¢t € T, the following
condition holds:

t1 to tn—1 tn ..
for all sequences s = sy — s3 — s3... — S, — Spyq of transitions from s
in Ag such that ¢ and ¢,, are dependent in s,, at least one of the t{,...,%, is

also in T5.
|

Like Definition 4.15, Definition 4.22 defines sets T, containing transitions that can be
either enabled or disabled in s. However, the new definition does not consider all states
in S, but only successor states of s in Ag. Moreover, it does not distinguish enabled
from disabled transitions: it requires the same condition for all transitions in 7§. Finally,
note that this definition is general, abstract, in the sense that it is independent of any

particular model.

Let T be the set of all transitions in a conditional stubborn set 7, that are enabled in

s. By definition of 7, T is nonempty. We now prove that T is a persistent set in s.

www.manaraa.com

4.7. ALGORITHM 4 (CONDITIONAL STUBBORN SETS) 61

Theorem 4.23 Let T be the set of all transitions in a conditional stubborn set T in

state s that are enabled in s. Then, T s a persistent set in s.

Proof:

The proof is by contradiction. Suppose that T is not persistent in s. Then, by
Definition 4.1, there exists in Ag a sequence s = s LN Sy b, S3... bt Sn, In, Spy1 of
transitions ¢, %,,...,t, € T, such that ¢, is dependent in s, with some transition t € T'.

Let us show that such a sequence cannot exist.

Since t € T, t € T, and t is enabled in s. Hence, by applying the definition of a
t

n—1

conditional stubborn set to ¢t with the sequence s = s; — s b, S3... — 8y In, Snt1
given above, at least one of the t1,...,t, is also in T,. Let ¢; be this transition: t; € T;. If
t; is enabled in s, then ¢; € T', which contradicts the assumption that ¢y, ... ¢, € T. Thus,
t; is disabled in s. Since t; is enabled in s;, by applying the definition of a conditional
stubborn set to t; € T, with the sequence s = s; LN S9 L, S3... fi s;, at least one of
the transitions ¢q,...,¢,_; is also in T,. Let ¢;, 7 < 4, be this transition: ¢; € T,. Again,
if ¢; is enabled in s, then t; € T', which contradicts the assumption that ¢,,...,t, ¢ T
Thus, t; is disabled in s. By repeating the same reasoning, one comes to the conclusion
that ¢; is in T,. Since t; is enabled in s, this means that ¢; € T, which contradicts the

assumption that ¢;,...,¢t, € T. &

It is worth noticing that the converse also holds: for a given state s, every persistent

set in s is the set of enabled transitions in a conditional stubborn set in s.

Theorem 4.24 Let T be a nonempty persistent set in s. Then, there exists a conditional
stubborn set T in s such that T is the set of all the transitions that are enabled in T.

Proof:
Simply take Ty, = T'. Since T is persistent in s, we know from Definition 4.1 that for
all transitions ¢t € T such that there exists in Ag a sequence s = s h, S5 b S3... bt

tn=t

Sn — Spi1 leading from s to ¢ and including only transitions ¢; ¢ T', t is independent
in s, with all transitions in T'. Thus, according to Definition 4.22, no other transition
needs be added in T, and T itself is a conditional stubborn set. m

Consequently, all persistent sets can be obtained by computing conditional stubborn

sets.

It can also be proved that all stubborn sets are conditional stubborn sets, while the

converse does not hold.

Theorem 4.25 Let T, be a stubborn set in state s. Then, Ty is also a conditional
stubborn set in s.

www.manaraa.com

62 CHAPTER 4. PERSISTENT SETS

Proof:

Consider a transition t € T, that is disabled in s. The first transitions ¢, that are
dependent with ¢ in some state s, reachable from s in Ay are transitions such that
Sn In, Spi1, t is disabled in s, and t is enabled in s,.;. By Definition 4.14, for all
sequences w of transitions from s to such a state s,, w contains at least one transition
in each set NES(t,s). Since all transitions in one set NES(t,s) are in Ts by point 1 of
Definition 4.15, all transitions in T that are disabled in s satisfy the condition given in
Definition 4.22.

Consider a transition ¢ € T, that is enabled in s. In all states s, reachable from
s in Ag where the first transitions ¢, that are dependent with ¢ are enabled, t is also
enabled. Since t and t, are simultaneously enabled in s, and are dependent in s,
they do-not-accord with each other, and all such transitions ¢, are in T, by point 2 of
Definition 4.15. Hence, all transitions in 7 that are enabled in s satisfy the condition
given in Definition 4.22. m

4.7.2 Algorithm

In other words, Definition 4.22 is finer than Definition 4.15 and can be used to produce

smaller persistent sets, and actually, all persistent sets in s.

This is a strong, though purely theoretical, result. Indeed, it is not obvious how to
develop a practical algorithm that would be able to take advantage of Definition 4.22,
since this definition uses information about sequences of transitions in the state space

Ag, about which no assumption can be made.

Nevertheless, this more general definition can be profitably used to justify the cor-
rectness of a new relation which models more finely the possible interactions between
operations on a given object. More precisely, our idea is to define a relation between
operations on a given object that would tell us for each operation op used by a transition
in T, which other operations op’ “might be the first to interfere with op from the current
state s”, and thus which other transitions should be added to T as well. The relation
“might be the first to interfere with op from the current state s” is represented by the

relation >, which is formally defined as follows.

Definition 4.26 Let op and op’ be two operations on the same object O and s be a

reachable state. The relation op >, op’ holds if there exists a sequence s = s; 406 5

I bl s I Spti-0f transitions from s in Ag such that V1 < i < n : Vop” on O used
by t;: op and op” are independent in state s;, ¢, uses op’, and op and op’ are dependent

ins, N

www.manaraa.com

4.7. ALGORITHM 4 (CONDITIONAL STUBBORN SETS) 63

The difference between the relation [>; and the relations “can-be-dependent” (Defini-
tion 4.6) and “do-not-accord” (Definition 4.13) is that dependencies between transitions
are only considered in successor states of s in Ag, not for all states in S, and that only the
first dependent operations that may occur from s are considered, instead of all dependent

operations.

The relation >, is included in the relation “can-be-dependent” (Definition 4.6): two
operations op and op’ that satisfy the condition given in the definition of [>, satisfy the
condition given in the definition of relation “can-be-dependent”, while the converse does
not hold, since all paths from the current state s to states where op and op’ are dependent
may contain a transition from some intermediate state s’ that uses an operation op”

dependent with op in s'.

The relation >, is also included in the relation “do-not-accord” (Definition 4.13).
Indeed, if op and op satisfy the condition given in the definition of >, then there exists
a sequence s = sy R S b, S3. Rt Sn In, sn+1 of transitions from s in Ag such that
V1 <i<n:Vop”" on O used by ti. op and op” are independent in state s;, t,, uses op’, and
op and op’ are dependent in s,,. Therefore, op remains defined in all states s;, 1 < i < n,
and since op and op’ are dependent in s,, and both defined in s,,, they do-not-accord. The
converse is not true, since all paths from the current state s to states where op and op’
are both defined and dependent may contain a transition from some intermediate state

s’ that uses an operation op” dependent with op in s'.

This proves that the relation > models the possible interactions between operations

on a given object more finely than the relations “can-be-dependent” and “do-not-accord”.

Moreover, it can be proved that this relation can profitably replace the two latter
relations in all the previous algorithms for computing persistent sets, i.e., Algorithms 1
2 and 3, while still producing persistent sets. Here, we will only prove this result for
Algorithm 3, the most elaborate algorithm considered so far, in order to clearly establish
that the new technique extends previous work. (The extension of Algorithm 1 and 2 can

be done in a similar way.)

Assume that a >, relation is given for all operations that can be performed on shared
objects. (We will discuss later how to provide > in practice.) Then, consider Algo-
rithm 3 again, and replace the relations “can-be-dependent” and “do-not-accord” by >,.
We obtain Algorithm 4, presented in Figure 4.5. Note that >, is used in both steps 2.a
and 2.b.

We first prove that Algorithm 4 returns persistent sets in s. For doing this, by Theo-
rem 4.23, it is sufficient to show that the sets T that it computes are conditional stubborn
sets in s.

www.manaraa.com

64 CHAPTER 4. PERSISTENT SETS

1. Take one transition ¢ that is enabled in s. Let T = {¢}.

2. For all transitions t in T:

(a) if t is disabled in s, either:
i. choose a process P; € active(t) such that s(j) # (pre(t) N P;); then, add to T,
all transitions t' such that (pre(t) N P;) € post(t').

ii. choose a condition c¢; in the guard G of ¢t that evaluates to false in s; then,
for all operations op used by t to evaluate c¢;, add to T, all transitions ¢’ such
that Jop' € used(t') : op b op'.

(b) if ¢ is enabled in s, add to T; all transitions ¢’ such that
i. t and t' are in conflict; or

ii. ¢ and t' are parallel and Jop € used(t),Jop’' € used(t') : op b op'.

3. Repeat step 2 until no more transitions can be added. Then, return all transitions
in T, that are enabled in s (transitions in T that are disabled in s are discarded).

Figure 4.5: Algorithm 4

Theorem 4.27 All sets T that are computed by Algorithm J are conditional stubborn
sets in s.

Proof:

Let T, be a set of transitions that is computed by Algorithm 4. Let us show that T}
is a conditional stubborn set in s.

Consider a transition t € T, that is disabled in s. The first transitions ¢, that are
dependent with ¢ in some state s, reachable from s in Ag by a sequence w of transitions
are transitions such that s, In, Sni1, t is disabled in s,,, and ¢ is enabled in s,,.1. Consider
such a sequence w of transitions from s in Ag: s = s; b, Sy b, S3... tt Sn In, Spi1. Two
cases are possible in step 2.a: either a process P; € active(t) such that s(i) # (pre(t)NP;)
is chosen, or a condition ¢; in the guard G of transition ¢ that evaluates to false in s is
chosen by Algorithm 4. In the first case, since ¢ is enabled in s, 1, $,11(i) = (pre(t)NFP;),
and thus there exists a transition ¢;, 1 < j < n, such that (pre(t) N Py) € post(t;), which
is hence included in set T by step 2.a.i. of Algorithm 4. In the second case, there exists
a transition ¢;, 1 < j < n, such that ¢; changes the value of ¢; from false to true by
modifying the output returned by an operation op used to evaluate ¢;, i.e., by performing
an operation dependent with op in s;. If there are several such transitions, let ¢; be the

first transition in w that uses an operation op’ dependent with op in s;. By definition of

www.manaraa.com

4.7. ALGORITHM 4 (CONDITIONAL STUBBORN SETS) 65

>,, we have op > op/, and thus ¢; is in T, by step 2.a.ii. This proves that all disabled
transitions in T satisfy point 1 of Definition 4.22.

Consider a transition ¢t € T that is enabled in s. In all states s, reachable from s in
Ag by a sequence w of transitions where the first transitions ¢,, that are dependent with
t are enabled, ¢ is also enabled. Consider such a sequence w of transitions from s in Ag:
s = 8 iR S b, S3... ft Sn bn, Sni1. We thus have that ¢ and ¢, are enabled in s, and
are dependent in s,. If ¢ and ¢ are not parallel, this implies by Definition 4.5 that at
least one process is active for both transitions ¢ and ¢,: P; € (active(t) N active(t,)). If
t and t, are in conflict, ¢, is added to T, by step 2.b.i. If ¢t and ¢, are not in conflict,
we know that (pre(t) N pre(t,)) = 0. Therefore, (pre(t) N P;) # (pre(t,) N P;), and it
is impossible for ¢ and ¢, to be simultaneously enabled (process P; cannot be in two
different local states (pre(t) N P;) and (pre(t') N P;) at the same time), which contradicts

the assumption that ¢ and ¢, are both enabled in s,,.

Assume now that ¢ and ¢’ are parallel. We know from Definition 3.21 that a sufficient
syntactic condition for two transitions ¢ and t,, to be independent in a state s,, is that they
are parallel and Yop; € used(t) and Yop, € used(t,), if op; and op, are two operations
on a same object, then op; and op, are independent in s,. Since t and ¢,, are dependent
in &', this implies that Jop € used(t), Jop' € used(t,) : op and op’ are dependent in s'.
Let t;, 1 < j < n be the first transition in w that uses an operation op” dependent (in
s;) with the operation op used by t. By definition of >, we have op 1>, op”. Hence, by
step 2.b.ii of Algorithm 4, ¢; is included in T;. This proves that all enabled transitions
in T satisfy point 2 of Definition 4.22. m

For a given state s, let Algo;(t) denote a persistent set that is returned by Algorithm 4,
with ¢ € {3,4}, when ¢t is the enabled transition chosen in step 1 of the algorithm. Let us
now compare the possible persistent sets that can be computed by Algorithm 3 and 4.

Theorem 4.28 For all transitions t that are enabled in a state s, for all persistent sets
Algos(t) that can be returned by Algorithm 3, there exists an execution of Algorithm /
that returns a persistent set Algo,(t) such that Algos(t) C Algos(t).

Proof:

Immediate by the definition of [>,, since relation [>; is included in both relations
“can-be-dependent” and “do-not-accord”. Indeed, since the only difference between Al-
gorithm 3 and 4 is the replacement of the relations “can-be-dependent” and “do-not-
accord” by a finer relation >, the set T, constructed by Algorithm 4 is always a subset
(not necessarily proper) of the set T constructed by Algorithm 3, provided that the same
choices are made in case of nondeterminism. m

To use Algorithm 4 in practice, we finally have to determine for each type of shared

www.manaraa.com

66 CHAPTER 4. PERSISTENT SETS

object what the relation [> is for each pair (op, op') of possible operations on this object.
Like all the other relations on operations we have defined so far (dependency, “can-
be-dependent”, “do-not-accord”), >, can only be approximated in practice, by using
sufficient conditions that ensure that “enough” operations are considered. In other words,
we have by default op I>;0p’ unless it can be proved that it is impossible to have a sequence
of transitions in Ag satisfying Definition 4.26. (Note that the relation >, can always
be approximated by using a relation “can-be-dependent” or “do-not-accord”, since these
two relations include relation [>;.)

Example 4.29 The following table represents a possible relation >, for the bounded
FIFO channel of size N considered in Example 3.20. For two operations op and op’ on
a same channel, if the condition given in row op and column op’ in the table is true in a
state s, then we have op >, op’, while “-” denotes the fact that op ¥ 0p’.

>, | Send | Receiwve | Length | Empty Full
Send | n<N| n=N | n<N | n<N|n=N-1
Receive | n =0 n>0 n >0 n=1 n >0
Length | n <N | n>0 - - -
Empty | n=20 n >0 - - -
Full |\ n<N| n=N - - -

For instance, let us show how to determine when Send >; Receive. One has to determine
when it is impossible to find a sequence s = s 2N Sy b, S3... bm1 Sm bmy Sma1 of
transitions from s in Ag such that the Send and Receive operations are dependent in
Sm, and V1 < ¢ < m : Yop” used by t;: Send and op” are independent in state s;. Since
Send and Receive are dependent in s,,, we obtain from the conditional dependency
relation between Send and Receive (see the table given in Example 3.20) that either
n=0orn=Nin s,. If n =0 in s,,, the Receive operation is not defined in s,, and
there cannot be a transition ¢,, executing a Receive operation such that s, bm Smat. If
n = N in s,,, the Receive operation is defined. If n < N in s, and since n = N in s,,, at
least one transition ¢;, 1 < ¢ < m, in the sequence from s to s,, executes an operation that
changes the value of n from n < N to N. This operation can only be a Send operation
and is performed from state s; where n < N. Therefore, we obtain from the conditional
dependency relation between Send and Send when n < N that the two Send operations
are dependent in s;. It is thus impossible to find a sequence satisfying Definition 4.26

when n < N in s. One concludes that Send > Receive only when n = N in s. B

Note that it would not have been possible to obtain such a proof without using conditional
dependency and conditional stubborn sets. Also note that relation >, is not necessarily

symmetric.

www.manaraa.com

4.8. DISCUSSION 67

Example 4.30 Consider a system containing two processes A = {ag,a;} and B =
{bo, b1, b, b3}, an object of type “bounded FIFO channel” of size N = 5, denoted g¢,
as considered in Examples 3.20 and 4.29, an object = of type “boolean variable”, and five
transitions

t; = (ag, true, Receive(q),a;), t3 = (by,true,z :=1,by),
ly = (ala true, T = 07 a0)7 ly = (bla Empty(Q)a Skipa bZ)a
ts = (b1, Not(Empty(q)), skip, b3),

where it is assumed that Receive(q) denotes a command that performs a Receive op-
eration on the object ¢ (the output of the Receive operation on ¢ is discarded here),
Empty(q) denotes a boolean condition equivalent to the value returned by the execution
of an Empty operation on object ¢, and skip denotes some internal (purely local) compu-
tation. Consider the state s = (ag, bo, (m1, ms, m3),0) € Ax B x V, x V, (¢ contains the
sequence of three messages mi;msyms3). In state s, both transitions ¢; and t3 are enabled.
As an exercice, the reader can compute what the persistent sets that can be returned by
Algorithms 1, 2 and 3 are. Actually, Algo;(t;) = Algoi(t3) = Algos(t1) = Algos(ts) =
Algos(ty) = Algos(tz) = {t;,t3}. In other words, neither Algorithm 1, nor Algorithm 2,
nor Algorithm 3 is able to return a nontrivial persistent set for this example. Let us
investigate how Algorithm 4, in contrast, is able to determine that {¢;} is a persistent
set in s. Starting with ¢; as the initial enabled transition taken in step 1, Algorithm 4
has to include in set T transitions that satisfy either point 2.b.i or point 2.b.ii. Since
no transition is in conflict with ¢;, no transition is included by step 2.b.i. Since the
only operation used by ¢; is a Receive operation on ¢, and since n = 3 in s (there are
three messages in ¢), the relation >, for ¢ given in Example 4.29 tells us to include by
point 2.b.ii all transitions that use either a Receive, a Length, or a Full operation on
g. Since there is no such transition other than t; itself, no other transition is included
in T,. (Note that Algorithm 3 would have included transition t4 and t5 by step 2.b.ii of
Algorithm 3, since a Receive operation and an Empty operation do-not-accord with each
other (when n = 1, they are both defined and are dependent).) Hence, Algo,(t;) = {t1},
and a persistent-set selective search using Algorithm 4 may only execute transition ¢,

from state s. m

4.8 Discussion

Four algorithms for computing persistent sets have been presented. These algorithms
follow the same general algorithmic idea: they start by taking an enabled transition and
then compute a persistent set from this transition by adding repeatedly all transitions

that might interfere with it. They can all be viewed as approximations of conditional

www.manaraa.com

68 CHAPTER 4. PERSISTENT SETS

stubborn sets (cf. Definition 4.22) introduced in the previous Section. Note that other

algorithms approximating Definition 4.22 are also possible.

We showed that

o Algoy(t) 2 Algos(t),
o JAlgos(t) : Algoy(t) D Algos(t), and

o VAlgos(t),FAlgoy(t) : Algos(t) D Algoy(t).

For the first three algorithms, we also showed that the worst-case time complexity to
compute Algo;(t), Algos(t), and Algos(t) are, respectively, O(|enabled(s)|*), O(|P|?),
and O(|7|?). Clearly, the more information about the system description the algorithm
uses and can exploit, the more sophisticated the algorithm is, the smaller the persistent

set that it returns can be, but the larger the run-time is.

There is an exception to this rule: the worst-case time complexity to compute Algos(t)
is the same as the one of Algoz(t). Indeed, the only difference between Algorithm 3 and
Algorithm 4 is that Algorithm 4 takes advantage of the relation >,, which models more
finely the possible interactions between operations on shared objects. In other words,
Algorithm 4 improves Algorithm 3 without any run-time overhead. Actually, the relations
“can-be-dependent” and “do-not-accord” should be replaced by the relation >, in all the
algorithms presented in this Chapter, i.e., Algorithms 1, 2 and 3: this is a no-risk and
free improvement.

Of course, a relation P>, has to be provided for each type of shared objects. But, in
practice, interactions between operations on shared objects have to be described some-
how anyway. We have showed that the relation >, gives the most general existing
framework for modeling interactions between operations, extending the relations “can-
be-dependent” and “do-not-accord”. In practice, it is worth defining >, as finely as
possible, in order to improve the effectiveness of the algorithms described in this Chap-

ter. Note that this has to be done only once for each type of shared object.

Therefore, we advocate the use of object libraries where classic high-level communi-
cation objects (such as various definitions of communication channels, shared variables,
semaphores, etc), operations on these objects, the dependency and >, relations are de-
fined as carefully as possible once for all. One can then specify concurrent systems by
using these object libraries and thus gain from the refined dependencies during verifi-
cation which is still fully automatic. In contrast, we discourage the opposite approach
consisting of defining only one type “shared variable”, which can be used to represent any
shared object, or even worst, the approach consisting in defining “everything”, including

objects, by processes (for instance, a transmission medium can be modeled by a process

www.manaraa.com

4.8. DISCUSSION 69

that transmits messages). Note that this recommendation is quite natural. Indeed, when
using such specialized objects, one indirectly provides more information to the verifica-
tion tool about the structure of the state space of the system being analyzed. If the
tool is clever enough to be able to use this information (as is the case with a “partial-
order” verification tool), it is not surprising that the verification can be performed more

efficiently and becomes applicable to larger systems.

Another question is: which algorithm among Algorithms 1, 2, and 3 should be used

in conjunction with a relation 7 It is difficult to answer this question.

Indeed, on one hand, it is easy to see that if a persistent set 7" in a state s is a subset
of another persistent set 7’ in s, then the reduced state-space A obtained by choosing
T in state s is smaller than the reduced state-space A’ obtained by choosing 7" in state
s (provided that the same rule is applied in all other visited states of Agr). Therefore, T
should be prefered to T".

However, on the other hand, if a persistent set T" in a state s contains less transitions
than another persistent set 7" in s, but is not a subset of 7", then choosing T" instead of
T’ is just a heuristics: the reduced state-space Ar obtained by choosing T in s will not
necessarily be smaller than the reduced state-space A’; obtained by choosing 7" in s.

This implies that there is no “best” algorithm for computing persistent sets. Indeed,
min(PS;), the smallest persistent set that can be computed by Algorithm j, is not nec-
essarily included in min(PS;), i < j. Computing as small persistent sets as possible is
only a heuristics. Moreover, computing smaller persistent sets can only be done at an ad-
ditional run-time expense, and using a more elaborate algorithm does not systematically
yield smaller persistent sets: an elaborate algorithm may return the same persistent set
as a simple algorithm, it then requires more time to produce the same result.

Therefore, in practice, the choice of a persistent-set algorithm is a trade-off between
the complexity of the algorithm, its additional run-time expense, and the reduction it
can yield. This choice also depends on the model used to represent concurrent systems
(some information is hard to extract from some models), and on the type of systems that

have to be analyzed (some optimizations are useless for some classes of examples).

Note 4.31 In [Val91], it is pointed out that all transitions that can disable an enabled
transition in a stubborn set T, need not systematically be included in Ty, if at least
one enabled transition in 7§ is independent with all transitions not in 7. From this
observation, Valmari introduced another variant of stubborn sets, called “weak stubborn
sets” [Val91]. Note that, following the idea of Valmari, “weak” versions of our notions of

persistent-set-and-of-conditional stubborn set can easily be defined. m

www.manaraa.com

70 CHAPTER 4. PERSISTENT SETS

Note 4.32 A definition very similar to our definition of persistent set appeared (inde-
pendently) in [KP92b]. This definition is the following.

Let s be a state. A faithful decomposition in s is a subset of transitions Ty, C 7
such that each transition in 7 \ Ty is either independent of each transition
in T or is disabled in s and its successors as long as no operation of Tj is

executed.

It is easy to see that the set of all enabled transitions in a faithful decomposition T in s

is persistent in s. W

www.manharaa.com

Chapter 5

Sleep Sets

5.1 Basic Idea

The second technique for computing the set of transitions 7' to consider in a selective
search is the sleep set technique [GW93] introduced in [God90]. This technique does not
exploit information about the static structure (code) of the program, as persistent-set
algorithms do, but rather information about the past of the search. Used in conjunc-
tion with a persistent-set technique, sleep sets can further reduce the number of states
explored. Indeed, when the persistent-set technique cannot avoid the selection of inde-
pendent transitions in a state, sleep sets can avoid the wasteful exploration of multiple

interleavings of these transitions.

Example 5.1 Consider a system containing two processes A = {ag,a;,as} and B =

{bo, b1, by}, two objects = and y of type “boolean variable”, and four transitions

ty = (ag, true,z :=0,ay), tz = (bo,true,y:=1,b),
ty = (ay,true,y := 0,ay), t4 = (by,true,x:=1,by).

Consider the state s = (ag, b,0,0) € A x B x V, x V,. In state s, both transitions ¢
and t3 are enabled. The global state space Ag corresponding to this system is shown
in Figure 5.1. It is easy to see that the only persistent set in s is the set {t1,#3} of all
enabled transitions. Therefore, every persistent-set selective search, whatever algorithm
it uses to compute persistent sets, has to execute both transitions ¢; and 3 from state s.
Note that transitions ¢; and t3 are independent in s. m

Let us consider an example to illustrate the basic idea behind sleep sets. Consider

again the system of Example 5.1. In state s, two enabled independent transitions ¢,

71 www.manaraa.com

72 CHAPTER 5. SLEEP SETS

Figure 5.1: Global state space for the system of Example 5.1

and t3 are selected to be explored from s. After exploring t;, t3 is still enabled since
t; and t3 are independent in s, and t3 could thus be selected to be explored from the
state s; reached after executing t; from s. Conversely, after exploring t3, ¢; will, for the
same reason, also still be enabled and could also be selected to be explored from the
state s3 reached after executing t3 from s. When selecting two independent transitions
t; and t3 from s, there is thus a risk that the two interleavings of ¢; and t3, i.e., the two
sequences t;t3 and t3t;, will be explored. This is potentially wasteful since both of these
interleavings lead to the same state. In order to prevent this situation from occurring,
the sleep set method prevents the exploration of ¢; in s3: t; is introduced in the “sleep

set associated with s3”.

More precisely, a sleep set is a set of transitions. A sleep set is associated with each
state s reached during the search. The sleep set associated with a state s is a set of
transitions that are enabled in s but will not be executed from s. The sleep set associated
with the initial state sy is the empty set. The sleep sets of the successors of a state s are

then computed as follows.

Let T be the set of transitions that have been selected to be explored from s, and
let_s.Sleep denote the sleep set associated with s. Take a first transition #; out of 7.
The sleep set associated with the state reached after executing ¢; from s is the sleep

set associated with..s mnmodified except for the elimination of the transitions that are

www.manaraa.com

5.2. ALGORITHM 73

1 Initialize:Stack is empty; H is empty;

2 s0.Sleep = 0;

3 push (s¢) onto Stack;

4 Loop: while Stack # § do {

5 pop (s) from Stack;

6 if s is NOT already in H then {
7 enter s in H;

8 T = Persistent_Set(s) \ s.Sleep
9

}
10 else {
11 T={t|te H(s).SleepNt¢ s.Sleep};
12 s.Sleep = s.Sleep N H(s).Sleep;
13 H(s).Sleep = s.Sleep
14 }
15 for all ¢t in T do {
16 s' = succ(s) after t; /* t is executed */
17 s'.Sleep = {t' € s.Sleep | (t,t') are independent in s };
18 push (s') onto Stack;
19 s.Sleep = s.Sleep U {t}
20 }

Figure 5.2: Selective search using persistent sets and sleep sets

dependent with ¢; in s. (Equivalently, only the transitions of the sleep set associated
with s that are independent with #; in s are passed to the sleep set associated with the
state reached after executing ¢; from s.) Let t5 be a second transition taken out of 7'
The sleep set associated with the state reached after executing t, from s is the sleep set
associated with s augmented with t¢;, minus all transitions that are dependent with ¢,
in s. One proceeds in a similar way with the remaining transitions of 7. The general
rule is thus that the sleep set associated with a state s’ reached by a transition ¢ from a
state s is the sleep set that was obtained when reaching s augmented with all transitions

already taken from 7', and purged of all transitions that are dependent with ¢ in s.

5.2 Algorithm

The algorithm of Figure 5.2 represents a persistent-set selective search augmented with

all operations required to manipulate sleep sets. It uses a Stack and a hash table H to

www.manaraa.com

74 CHAPTER 5. SLEEP SETS

store visited states and their associated sleep set. Each time a new state s is encountered
during the search (line 6), it is stored in the hash table H, with its associated sleep set
s.Sleep (line 7). Then, a call to the function Persistent_Set is performed (line 8). This
function returns a persistent set 7" in s that is nonempty if there exist transitions enabled
in s. Transitions that are in the current sleep set s.Sleep need not be explored, and are

thus removed from set T (line 8).

If the current state s has already been visited (line 10), let H(s).Sleep denote the
sleep set that has been stored with s in H. If H(s).Sleep contains transitions that are
not in the current sleep set s.Sleep associated with s, these transitions are selected to be
explored (line 11) with a new sleep set equals to s.Sleep N H(s).Sleep (lines 12). This
new sleep set associated with s is stored with s in the hash table H (line 13). Hence, the
value of H(s).Sleep may shrink as the search proceeds, since transitions can be removed

from it at a later visit. (Note that H(s).Sleep never grows.)

All transitions selected to be explored, i.e., in set T, are explored (line 15-16), and
the sleep set that is to be associated with each successor state of s is computed (line 17—
19) following the procedure described above (s.Sleep is used in line 19 as a temporary

variable to store all transitions already taken from T during this computation).

The correctness proof of the algorithm is the following. Let Ag be the reduced state-
space explored by the algorithm of Figure 5.2. We now prove that all deadlocks in Ag
are in Ap.

Theorem 5.2 Let s be a state in Ag, and let d be a deadlock reachable from s in Ag by
a sequence w of transitions. For all w; € [w]g, let t; denote the first transition of w;. Let
H(s).Sleep denote the sleep set stored with s in H when the search is completed. If for
all t;, t; is not in H(s).Sleep, then d is reachable from s in Ag.

Proof:

The proof proceeds by induction on the length of w. For |w| = 0, the result is
immediate. Now, assume the theorem holds for paths (sequences of transitions) of length
n > 0 and let us prove that it holds for a path w of length n + 1.

We first prove that at least one of the transitions ¢; has been executed from s in Ag.
If some of the ¢; have been in H(s).Sleep at some moment during the search, they have
been removed from H(s).Sleep at a later visit of s, since none of the t; are in H(s).Sleep
when the search is completed; since transitions that are removed from H(s).Sleep are
executed, there is at least one of the transitions ¢; that has been executed from s in Ag.
If none of the ¢; were ever in H (s).Sleep, this means that none of them were in the sleep
set s.Sleep associated with s the very first time it has been visited (since H(s).Sleep can

only shrink between successive visits of s). During this first visit, a call to the function

www.manaraa.com

5.2. ALGORITHM 75

Persistent_Set was performed and, from Lemma 4.2, we know that at least one of the t;
was in the persistent set in s that was returned. Since this transition was not in s.Sleep,

it has been executed from s in Ap.

Now, consider the last visit of s where some of the ¢; have been executed from s (we
have just proved such a visit exists). Let ¢; denote the first transition ¢; that has been
explored during this visit. From this visit of s until the end of the search, H(s).Sleep
did not contain any transition ¢;, since we assumed that H(s).Sleep does not contain
any transition t; at the end of the search, and since none of the t; are executed from s
after this last visit. Let s.Sleep denote the sleep set associated with s just before the
execution of ¢; from s. At this moment, s.Sleep does not contain any transition ;.

Let s’ be the state reached after executing ¢; from s. We have w; = t,w'. By
Theorem 3.10, since w leads to d in n + 1 steps, w; also leads to d, in n 4+ 1 steps.
Consequently, w’ leads to d from s, and is of length n. Let us show that, for all w} € [w']¢,

the first transition ¢, of w! is not in H(s').Sleep.

Assume the opposite, i.e., there exists some transition t; € H(s").Sleep at the end of
the search. Hence, ¢, has always been in H(s').Sleep. Consequently, ¢; was in the sleep
set s'.Sleep associated with s’ when s’ was explored from s by ¢;. This implies that ¢.
and t; are independent in s, else t. would not have been passed on to s'.Sleep. Since they
are independent in s, ¢ is enabled in s and is the first transition of a path w; leading
from s to d. Given that ¢, is in s'.Sleep, either t; was in s.Sleep, or t; was added after
being executed from s. The first possibility is in contradiction with the fact that ¢, is
also the first transition of some w; € [w]; leading to d from s and thus is not in s.Sleep.
The second possibility is incompatible with the fact that ¢, not ¢, is the first transition

among the t; to be executed from s.

The inductive hypothesis can thus be used with w' from s’ to establish that d is visited
from s’ and hence from s. m

By applying Theorem 5.2 to the initial state sy, we directly reach the conclusion
that the algorithm of Figure 5.2 indeed reaches all deadlock states, since the sleep set
associated to the initial state is the empty set.

The algorithm of Figure 5.2 stores in randomly accessed memory one sleep set H(s).Sleep
with each state encountered during the search. The size of H(s).Sleep is bounded by the
number of transitions that are enabled in s. Sleep sets s.Sleep associated with states that
are in the Stack can be stored with these states in a sequentially accessed memory. The
overhead in randomly accessed memory due to the use of sleep sets in a persistent-set
selective search is thus O(|Sg||Enabled|) where |Sg| denotes the number of states in Ap

and |Enabled| is the average number of transitions that are enabled in a state.

Congcerning time.complexity, each transition in Ag is explored exactly once. Each time

www.manaraa.com

76 CHAPTER 5. SLEEP SETS

a transition ¢ from a state s to a state s’ is executed during the search, a sleep set s'.Sleep
is computed from s.Sleep and the transitions already taken from s. This can be done in
time O(|enabled(s)|) (assuming that it takes O(1) time to check whether two transitions
are independent or not in a given state). One also has to check whether s is already in
H: let us assume that this operation takes O(1) time (i.e., that the number of collisions
is bounded). When s’ has already been visited, s'.Sleep is compared to H(s').Sleep:
this can be done in O(|enabled(s')|). Overall, the overhead in run time due to the
manipulation of sleep sets in a persistent-set selective search is thus O(|Ag||Enabled)|)
where |Ap| is the number of transitions in Ar and |Enabled| is the average number of

transitions that are enabled in a state.

Note 5.3 Obviously, the set T' = Persistent_Set(s) \ s.Sleep of transitions selected to be
executed from a state s is, in general, not a persistent set in s. For instance, consider
state s3 in Example 5.1. The sleep set s3.Sleep associated to state sz will be {t;}. Since
the only persistent set in s3 is the set {t1, ¢4}, the set T of transitions executed from s;
by Algorithm 5.2 will be {4}, which is not persistent in s. This illustrates the fact that
sleep sets enable one to go beyond persistent sets in computing the transitions that need

to be explored in a selective search. m

5.3 Properties of Sleep Sets

5.3.1 On Combining Sleep Sets with Persistent Sets

We showed that the notion of sleep set is orthogonal to the notion of persistent set. We
also showed how sleep sets and persistent sets can be combined. In this Section, we

further discuss this combination.

Consider the case where sleep sets are used alone with a classical search, i.e., without
being combined with a persistent-set algorithm. This is equivalent to assume that, in
each state s that is visited during the search performed by the algorithm of Figure 5.2,
the function Persistent_Set returns the set of all enabled transitions in s. (Since this
set is trivially persistent in s, this case is actually a particular case of the general case
considered in the previous Section.) Then, we can show that all states in A are visited
by such a search: all states in Ag are in Ag, where Ag is the reduced state-space explored

by such an algorithm.
The proof is based on the following Theorem.

www.manaraa.com

5.3. PROPERTIES OF SLEEP SETS 77

Theorem 5.4 Let Ag be the reduced state-space explored by the algorithm of Figure 5.2
when the function Persistent_Set always returns the set of all enabled transitions. Let s be
a state in Ag, and let x be a state reachable from s in Ag by a sequence w of transitions.
For all w; € [w], let t; denote the first transition of w;. Let H(s).Sleep denote the sleep
set stored with s in H when the search is completed. If for all t;, t; is not in H(s).Sleep,

then x is reachable from s in Ag.

Proof:

The proof is similar to the proof of Theorem 5.2. The only difference is that, instead
of invoking Lemma 4.2, in the second paragraph of the proof, to deduce that at least
one of the t; leading to the deadlock d is in the set of transitions that is returned by
Persistent_Set, the fact that here at least one of the t; leading to x has been executed
from s is straightforward, since all transitions not in s.Sleep are systematically executed
from s, including all transitions ¢;. m

By applying Theorem 5.4 to the initial state sg, we directly reach the conclusion that
the sleep-set algorithm used without being combined with a persistent-set algorithm visits
all reachable states, since the sleep set associated to the initial state is the empty set. In
other words, sleep sets used alone cannot reduce the number of states in Agr. However,
they can reduce the number of transitions in Ag, which can still be very useful (see
Chapter 8).

Let us consider another particular case. Assume that, during the search performed by
the algorithm of Figure 5.2, the function Persistent_Set never returns enabled transitions
that are independent. In other words, the function Persistent_Set called in any state s
always returns a set T of transitions enabled in s such that, for all ¢ and ¢ in T, ¢ and
t' are dependent in s. In this case, it is easy to see that all sleep sets will always be
empty: from the initial state, whose associated sleep set is empty, no transition will ever
be introduced in a sleep set, for all successor states. Therefore, the impact of sleep sets
will be void, and sleep sets will not yield any reduction in both the number of states and

transitions that are explored.

Note that, roughly speaking, using sleep sets with a “perfectly bad” persistent-set
algorithm is similar to the first case mentioned above, while using sleep sets with a
“perfectly good” persistent-set algorithm might be equivalent to the second case above.
In practice, however, persistent-set algorithms are rarely perfectly good or bad in all
states, and these two extreme cases rarely occur. Therefore, sleep sets can very often
further reduce both the number of states and transitions that need to be explored for

verification purposes (see Chapter 8).

www.manaraa.com

78 CHAPTER 5. SLEEP SETS

Figure 5.3: Reduced state space with sleep sets

5.3.2 Reducing State Matchings

A nice property of sleep sets is that they can strongly decrease the number of state
matchings that occur during the search [GHP92]. A state matching occurs each time
an already visited state is visited again later during the search. The reduction of state
matchings due to sleep sets can be illustrated by the following example.

Example 5.5 Consider a system containing two processes A = {ag,a;,as} and B =

{bo, b1, b}, two objects z and y of type “boolean variable”, and four transitions

ty = (ag, true,z :=1,ay), t3 = (b, true,y:=1,by),
ty = (ay,true,z := 0,ay), ty = (by,true,y:=0,by).

Consider the initial state sg = (ag, by, 0,0) € Ax BxV, xV,. The reduced state space Ag
explored by Algorithm 5.2 for this system when the function Persistent_Set(s) returns the
set of all enabled transitions in s is presented in Figure 5.3. The initial state is the state
i e of the sleep set H(s).Sleep when the search is completed

e each state s. Dotted transitions are not explored by the

www.manharaa.com

5.3. PROPERTIES OF SLEEP SETS 79

For the system considered in the previous example, all states are visited only once by
the algorithm of Figure 5.2. Of course, if one could know it in advance before starting
the search, it would not be necessary to store any states! Unfortunately, for arbitrary
systems, it is impossible to determine before the search is completed which are the states

that are encountered only once.

We will come back to this property of sleep sets in Chapter 8.

Note 5.6 Another sleep-set algorithm appeared in [GHP92], where two additional as-
sumptions were made: sleep sets were assumed to be used without being combined with a
persistent-set algorithm, and the search was assumed to be performed in a “depth-first”
order. Under these assumptions, another sleep set algorithm was given, that did not
require to store a sleep set H(s).Sleep with each state in H. Note that, in this Chapter,

no assumptions were made about the order in which the search has to be performed. m

www.manharaa.com

80 CHAPTER 5. SLEEP SETS

www.manharaa.com

Chapter 6

Verification of Safety Properties

6.1 Beyond Deadlock Detection

So far, we have presented several selective-search algorithms that explore only a reduced
part Ag of the global state space Ag such that all deadlocks in Ag are in Ar. In order
to check for properties more elaborate than deadlocks, it is usually necessary to preserve

more information, i.e., more states and transitions, in the reduced state space Ag.

Indeed, consider, for instance, the reachability of a local state | of a process P;. Pre-
cisely, this problem amounts to checking whether there exists a global state s that is
reachable from the initial state sy and such that s(i) = [. The algorithms presented
in the two previous Chapters are not sufficient for checking such a property. This is
illustrated by the following example.

Example 6.1 Consider a system containing two processes A = {ag, a,} and B = {by, l},
two objects x and y of type “boolean variable”, and three transitions

ty = (ag, true,z :=1,ay), t3 = (bo,true,y:=1,1),
ty = (ay, true, z := 0, ay).

State so = (ag,b9,0,0) € A x B x V, x V, is the initial state of this system. In s,
transitions ¢; and t3 are enabled and independent. The set {t;} is a persistent set in
sg. Hence, a selective search can, for instance, explore only ¢; from so. After executing
t; from sg, the state s; = (ay,bg,1,0) is reached. In sy, ¢, and t3 are enabled and
independent, and {¢,} is a persistent set in s;. Thus, a selective search can explore only
to from s;. After executing o, the selective search stops since transition ¢, leads back to
the initial state sy, which has already been visited with an empty sleep set. Transition

t3, though being enabled in s, and s;, has never been explored, and local state [has

81 www.manaraa.com

82 CHAPTER 6. VERIFICATION OF SAFETY PROPERTIES

(aﬂabﬂaoao)

(alabﬂalao)

Figure 6.1: Reduced state space for the system of Example 6.1

not been reached. The reduced state space Agr explored, which is shown in Figure 6.1,
is sufficient for proving the absence of deadlock in the system: since A can loop forever
independently of the rest of the system, i.e., process B, one can conclude that this system
is deadlock free even without considering the possible behaviors of B. However, Ag is

not sufficient to determine if [is reachable or not from the initial state. m

The phenomenon illustrated above is referred to as the “ignoring problem” in [Val91]:
the behavior of some processes (e.g., B in the above example) can be completely ignored
from some state reached during a selective search. In order to check other properties
than deadlocks, selective-search algorithms have to be adapted to the type of property
one wants to check.

In this Chapter, we present a modification of a selective-search algorithm that can be
used for checking the reachability of local states, and, more generally, for checking any
safety property. The idea is to enforce an additional condition, that we call a proviso,
during the selective search. This proviso ensures that the choices between enabled inde-
pendent transitions made during the search are not completely “unfair” with respect to
some processes. Our proviso can be used with a selective search that makes use of both
persistent sets and sleep sets to select the transitions that are explored.

This Chapter is organized as follows. In the next Section, we present the proviso
mentioned above. Then, we prove that any selective search using persistent sets and
sleep sets augmented with this proviso explores a trace automaton. Loosely speaking, a
trace automaton for a given system is an automaton that accepts at least one interleaving
for each trace (concurrent execution) the system can perform from its initial state. Many
interesting properties of a concurrent system can be checked on a trace automaton.

These properties are presented in Section 6.4. Finally, we compare our solution with

www.manaraa.com

6.2. ALGORITHM 83

other related work.

6.2 Algorithm

We saw with Example 6.1 that in general, the reduced state space Ag that is explored by
a selective-search algorithm using persistent sets and sleep sets, as shown in Figure 5.2,
is not sufficient to check the reachability of local states. This problem can be solved by

modifying the selective-search algorithm as follows.

The modification consists in enforcing an additional condition, called a proviso, on
the sets of transitions that are returned by the function Persistent_Set. This proviso
requires that the selective search is performed in a depth-first order. Let Stack denote
the current “depth-first-search stack” during the search, i.e., the set of states that are
in the path from the initial state sy to the currently visited state. The proviso enforces

the following restrictions on the sets of transitions that can be returned by the function
Persistent_Set [HGP92].

Definition 6.2 Each time a call to the function Persistent_Set is performed during the
search, the persistent set in s that is returned by this function has to satisfy the following

requirement:

1. either 3t € Persistent_Set(s): t & s.Sleep and s’ ¢ Stack, where s is the successor
of s by t (s N '), and s.Sleep is the sleep set associated with s when the call is
performed;

2. or Persistent_Set(s) = enabled(s).
||

In other words, the set Persistent_Set(s) returned by the function Persistent_Set has
to contain at least one transition not in the current sleep set s.Sleep and not lead-
ing to the current Stack. Else, if such a persistent set does not exist, the set of all
enabled transitions is returned (remember this set is always a persistent set). Let Persis-
tent_Set_Satisfying Proviso(s) denote a persistent set in s that satisfies the above proviso.

The algorithm of Figure 6.2 shows how to perform a selective search using persistent
sets and sleep sets in a depth-first order. This algorithm is very similar to the one of
Figure 5.2. The main difference is that, at any time during the search, the data structure
Stack now contains exactly the states that are in the path currently being explored from

the initial state so to the currently visited state. Note that, as explained in the previous

www.manaraa.com

84 CHAPTER 6. VERIFICATION OF SAFETY PROPERTIES

1 Initialize:Stack is empty; H is empty;

2 Search() {

3 s9.Sleep = 05 delay(so) = 0;

4 push (s9) onto Stack;

5 DFS()

6)

7 DFS() {

8 s = top(Stack); /* s is visited */

9 if s is NOT already in H then {

10 enter s in H;

11 T = Persistent_Set_Satisfying_Proviso(s)\s.Sleep
12 }

13 else {

14 T={t|te H(s).SleepNt¢ s.Sleep};

15 s.Sleep = s.Sleep N H(s).Sleep;

16 H(s).Sleep = s.Sleep

17 }

18 for all ¢t in T do {

19 s' = succ(s) after t; /* ¢t is executed */
20 s'.Sleep = {t' € 5.Sleep | (t,t') are independent in s };
21 if s’ is in Stack then {

22 delay(s') = delay (s') U {s'.Sleep}
23 }

24 else {

25 delay(s')= 0;

26 push (s') onto Stack;

27 DFS()

28 }

29 s.Sleep = s.Sleep U {t}

30 }

31 pop s from Stack; /* s is backtracked */
32 if delay(s)# 0 then {

33 take s.Sleep out of delay(s);

34 push (s) onto Stack;

35 DFS()

36 }

37 }

search using persistent sets, sleep sets, and proviso

www.manharaa.com

6.2. ALGORITHM 85

Chapter, a state can be visited with different sleep sets, and transitions from this state
can be explored at successive visits of the state (though a transition is never explored
more than once from the same state). In order to prevent a state s from appearing several
times in Stack (in case of cycles), and to guarantee that the exploration is performed in
a depth-first order, re-explorations of states that are in Stack are delayed (line 21-23):
the sleep set that has to be associated with s during such a re-exploration is saved in an
auxiliary data structure named “delay”. Later, once s has just been backtracked (line
31), the algorithm checks (line 32) whether there are delayed re-explorations of s. If yes,
state s is then re-visited with a sleep set taken out of delay(s) (line 33—-35). (The order

in which sleep sets are taken out of delay(s) does not matter.)

In what follows, a state s is said to be “visited” when it is accessed from the top of
Stack in line 8 of the algorithm. s is said to be “backtracked” when it is popped from
Stack (line 31). When a state s is backtracked, “the last visit of s” is the last time s has
been visited, while “during the last visit of s” is the interval of time from the last time
s has been visited until the last time it has been backtracked. If s - s', “the sleep set
associated with s’ after the execution of ¢ from s” denotes the sleep set associated to s’

that is computed during the visit of s (line 20) when ¢ is executed from s.

Note that, since the search is performed in a depth-first order, when a state s is
backtracked, all the transitions ¢ that have been selected to be executed from s (i.e., that
are in set T considered in line 18) during the last visit of s have been executed. Moreover,
all the (immediate) successors s’ of s by such transitions ¢ that are not in Stack have
already been visited with the sleep set associated with s’ after the execution of ¢ from s,
and have already been backtracked. The value of Stack just after a state s is visited and
just before s is backtracked is the same (and contains s).

Example 6.3 Consider again the system of Example 6.1. A possible reduced state
space explored by the algorithm of Figure 6.2 for this system is shown in Figure 6.3. The
value of the sleep set H(s).Sleep when the search is completed is given between braces
below each state s. Dotted transitions are not explored by the algorithm of Figure 6.2.
Initially, the persistent set {t;} is selected in the initial state so = (aq, by, 0,0). State
s1 = (ay,bg, 1,0) is then reached with an empty sleep set. In sy, {t5} is a persistent set.
However, it does not satisfy the proviso since t, leads back to the state sg, which is in
Stack. Thus, another persistent set has to be computed. The set {t5, 3} is a persistent
set in s; and satisfies the proviso since t3 leads to a state not in Stack. By executing
before t3 in sy, ty is introduced in the sleep set associated to the state s, = (ay,1,1,1)
reached after the execution of ¢3 from s;. In s, only %, is enabled. Since it is in the sleep
set associated to s, it is not executed, and the search stops. Note that, if sleep sets were
not used (or if the persistent set {t3} was selected in s1), to would have been explored

from sy state s3 = (@, [, 0, 1) would have been explored, and transition ¢; from s3 would

www.manaraa.com

86 CHAPTER 6. VERIFICATION OF SAFETY PROPERTIES

123

(ala la 1: 1)

{} {12}

Figure 6.3: Reduced state space with proviso for the system of Example 6.1

have been explored as well. B

6.3 Trace Automata

In this Section, we prove that reduced state spaces Ag explored by the algorithm of
Figure 6.2 are trace automata (introduced in [God90]) provided that the valid conditional
dependency relation used is weakly uniform.

Intuitively, a trace automaton for a given system is an automaton that accepts at least
one interleaving for each trace (concurrent execution) the system can perform from its

initial state so. Formally, trace automata are defined as follows [God90].

Definition 6.4 Let Ag be the global state space of a system. A reduced state space Ag
for this system is a trace automaton for this system if, for all sequences w of transitions
from the initial state sg in Ag, there exists a sequence w' of transitions from sy in Ag such
that w' is a linearization of a trace defined by an extension of w, i.e., w € Pref(Jw'],,),

where Pref([w]s,) denotes the set of the prefixes of the sequences in [w],,. ®

Let L4, and L4, be respectively the languages of finite words formed by symbols of T,

i.e., sequences of transitions, accepted by the automaton Ag and Ag (cf. Section 2.2). If

Ap is a trace automaton for the system, we have:

www.manharaa.com

6.3. TRACE AUTOMATA 87

All sequences of transitions from sy in Ag are represented by a trace in Ag, hence the

name “trace automaton”.

Example 6.5 The reduced state space shown in Figure 6.3 is a trace automaton for
the system of Example 6.1. Indeed, the reader can check that for all sequences w of
transitions from sy in Aq, there exists a linearization w’ of a trace defined by an extension
of w. For instance, consider the sequence w = t,tyt3t 1ty from sy in Ag. The sequence
w' = tytatytatits from sq in Ag is such that w” = t1tyt3t1tot; € [w'];, and w € Pref(w").
|

We now prove that the algorithm of Figure 6.2 explores trace automata. However, in
order to establish this result, we need to make an additional assumption about the valid
conditional dependency relation that is used for computing persistent sets and sleep sets
in the algorithm of Figure 6.2: this dependency relation must be weakly uniform!.

Definition 6.6 A valid conditional dependency relation D for a LFCS is said to be
weakly uniform if Vt,, ty,t; € T,Vs € S, if we have s 25 s; 23 s, 5 2 &, (ti,t3,8) &€ D
and (t9,t3,51) € D, then (t1,ty,s) € D implies (t1,19,s') € D. m

In a similar way, weakly uniform dependency relations can be defined between operations
on objects. It is straightforward to show that the valid conditional dependency relation
on transitions obtained with Definition 3.21 and weakly uniform valid conditional de-
pendency relations between operations on objects is weakly uniform. Note that a valid
constant dependency relation is trivially weakly uniform.

Example 6.7 The two dependency relations given in Example 3.19 are weakly uniform.
In contrast, the dependency relation given in Example 3.20 is not weakly uniform. Indeed,
when n = N — 1, a Full operation can be followed by a Send operation on the same
bounded FIFO channel of size N, a Receive operation is defined and is independent
with both Full and Send operations, Full and Send operations are dependent, but
after executing a Receive operation, they become independent (when n = N — 2). Tt
is possible to modify the dependency relation given in Example 3.20 to obtain a weakly
uniform dependency relation by considering Send and F'ull operations as being dependent
when n < N (instead of when n = N — 1), and Receive and Empty operations as being
dependent when n > 0 (instead of when n =1). m

by analogy with another, stronger, condition called “uniformity condition”, which appeared
in [KP92al.

www.manaraa.com

88 CHAPTER 6. VERIFICATION OF SAFETY PROPERTIES

Let w = tyt5...t, be a sequence of transitions from a state s in the global state space
Ag of the system being analyzed. Let s = s LN Sy b, S3... ft Sn, In, Spi1 be the
sequence of states it goes through. In what follows, “t is independent with all transitions

in w” is an abbreviation for “¢ is independent in s; with ¢;, 1 < i < n”.

We have the following.

Lemma 6.8 Let s be a state in Ag, and let w be a sequence of transitions from s in Ag.
For allw; € [w], from s in Ag, let t; denote the first transition of w;. Let Persistent_Set(s)
be a nonempty persistent set in s. If none of the t; are in Persistent_Set(s), then all

transitions in Persistent_Set(s) are independent with all transitions in w.

Proof:

The proof is by contradiction. Suppose there exist transitions in w that are dependent
with some transitions in Persistent_Set(s) or that are in Persistent_Set(s). Let ¢; be the
first such transition in w. Hence, all transitions before ¢, in w are independent with all

transitions in Persistent_Set(s), and are not in Persistent_Set(s).

If ¢ is in Persistent_Set(s), then the sequence w' = txty...t; 1tgsy...1t,, ie., the
sequence w where the transition ¢; has been moved to the first position, is in [w],, and
t), is the first transition of a w; € [w],. This contradicts the assumption that none of the
t; is in Persistent_Set(s).

If ¢ is not in Persistent_Set(s), since ¢;, is dependent in s, with some transition ¢ in
Persistent_Set(s), the sequence of transitions tits .. .%;_1, which includes only transitions
not in Persistent_Set(s) and which leads from s to s, in Ag, is in contradiction with the
fact that Persistent_Set(s) is a persistent set in s, by the definition of a persistent set (cf.
Definition 4.1). =

Thanks to the “weakly uniform” assumption, we also have the following.

Lemma 6.9 Let s be a state in Ag, and let w be a sequence of transitions from s in
Ag. For all w; € [w], from s in Ag defined from a valid conditional dependency relation
that is weakly uniform, let t; denote the first transition of w;. Let Persistent_Set(s) be
a nonempty persistent set in s. If none of the t; are in Persistent_Set(s), then for all

transitions t in Persistent_Set(s), we have [w]s; D [w]g with s LN

Proof:

By Lemma 6.8, for all transitions ¢ in Persistent_Set(s), ¢t is independent with all

o t
transitions in w from 's, and hence w is a sequence from s’ in Ag, with s — s’

www.manaraa.com

6.3. TRACE AUTOMATA 89

By definition, all v’ € [w]y can be obtained from w by successively permuting pairs
of adjacent independent transitions. It is thus sufficient to prove that, for any two words
wy, wy € [w]y that differ only by the order of two adjacent independent transitions, if
w; € [w]s then wy € [w];.

Hence, let us assume that w, = t;...ab...t, and wy = t;...ba...t,. We have from

s'in Ag
7 11 to tj a b tn
' =8 = Sy... 8, = Sji41 — Sjta... — S,
and
1t to t; b / a tn
§' =81 = Sy S Si = S ... 0 Sy
. . t1...t; a b .
Consider the states s”,s” and s in Ag such that s =’ s” = s = ", Since

t is in Persistent_Set(s) and since none of the first transitions ¢; of a w; € [w|, are in
Persistent_Set(s), by Lemma 6.8, ¢ is independent with all transitions in w. This implies
that ¢ and a are independent in s”, and that ¢ and b are independent in s"”. Moreover, we
have s” -5 s;. Since t is independent with @ in s” and independent with b in s", and that
a and b are independent in s;, a and b are independent in s” since the valid dependency

relation considered is weakly uniform. Consequently, wy € [wi]s = [w];. ®

Lemma 6.10 Let s be a state that is visited during the search performed by the algorithm
of Figure 6.2. When s is backtracked, let H(s).Sleep denote the sleep set stored with s
wm H, and let Ar denote the reduced state space that has been explored so far. Let w be
a nonempty sequence of transitions from s in Ag. For all w; € [w]s from s in Ag, let t;
denote the first transition of w;. If none of the t; are in H(s).Sleep, then there exists a
state s' in Ap such that the following conditions hold:

w’ t1 . . o, .
1. s = s — s" in Ar where t| is one of the transitions t;, and w' does not contain

any transitions in w,
2. [ww']y = [w'w|y from s in Ag, and

3. if we note wy = tyw! € [w]g, and for all w} € [wi]sn, t. denotes the first transition
of wt, none of the t. are in s".Sleep, where s".Sleep denotes the sleep set associated
with s" after the execution of t; from s'.

Proof:
The proof is by induction on the order in which states are backtracked.

Let s, be the first state that is backtracked during the search. When s; is back-
tracked, s; has been visited exactly once. Let s;.Sleep be the sleep set that was asso-

ciated to.s; when s; ‘was visited. The value of s;.Sleep was saved with s; in H, and

www.manaraa.com

90 CHAPTER 6. VERIFICATION OF SAFETY PROPERTIES

thus we have H(sy).Sleep = s;.Sleep. During this visit of sy, a call to the function Per-
sistent_Set_Satisfying_Proviso was performed. Let Persistent_Set_Satisfying_Proviso(s;)
denote the persistent set in s; satisfying the proviso that was returned. If there exists a
transition ¢ in Persistent_Set_Satisfying Proviso(s;) such that ¢ & s;.Sleep and s, Lo
and s’ € Stack, such a transition ¢ would have been executed from s;, and s’ would
have been backtracked before s;, which is impossible. Therefore, because of the proviso,
we know that all enabled transitions not in s;.Sleep have been executed from s; (they
all lead to states in the Stack). Among these, let ¢; be the first transition ¢; that has
been executed from s; (we know that all transitions ¢; have been executed from s; since
Vit i t; & s1.Sleep). Let s” be the state reached after executing ¢; from s;: s b " We
have wy = tyw]. Let s".Sleep be the sleep set associated with s” after the execution of
ty from s;. Let us show that, for all w} € [w]]sr, the first transition ¢} of w} is not in
s".Sleep.

Indeed, assume the opposite, i.e., there exists some transition t; € s”.Sleep such that
ti is the first transition of a w} € [w}|s». This implies that ¢, and t; are independent in
s1, else t, would not have been passed on to the sleep set associated to s”. Since they
are independent in sy, t; is enabled in sy and is the first transition of a path w,. Given
that ¢} is in s”.Sleep, either ¢, was in s;.Sleep or was added after being executed from
s1. The first possibility is in contradiction with the fact that ¢ is also the first transition
of some w; € [w],, and thus is assumed not to be in s;.Sleep. The second possibility
is incompatible with the fact that ¢y, not ¢., is the first transition among the t; to be

executed from sy.

Therefore, the lemma holds for the first backtracked state s; with w' = e. Now, let us
prove that, if the lemma holds for the (n — 1)st backtracked states, then it holds for the
nth backtracked state s,. Two cases are possible: either s, has never been backtracked
before, or it has already been backtracked during the search. We consider these two cases

successively.

If s, is backtracked for the first time, s, has been visited exactly once. Let s,.Sleep
be the sleep set that was associated to s, when s, was visited. The value of s,.Sleep
was saved with s, in H, and thus we have H(s,).Sleep = s,.Sleep. During this (first)
visit of s,, a call to the function Persistent_Set_Satisfying_Proviso was performed. Let
Persistent_Set_Satisfying Proviso(s,) denote the persistent set in s,, satisfying the proviso
that was returned. If at least one transition ¢; is in Persistent_Set_Satisfying_Proviso(s,),
t; has been explored from s, since we know t; & s,.Sleep. By considering the first t;
which has been explored from s, during this visit, and by applying a reasoning iden-
tical to the one done above for s, one concludes that the lemma holds for s,. Con-
sider the case where V¢; : t; ¢ Persistent_Set_Satisfying Proviso(s,). This means that

there exists at least-one transition enabled in s, and not in s,.Sleep that has not been

www.manaraa.com

6.3. TRACE AUTOMATA 91

explored from s,. Hence, because of the proviso, there exists a transition t € Persis-
tent_Set_Satisfying_Proviso(s,) such that ¢t ¢ s,.Sleep, s, L s and s ¢ Stack. Since
Vt; 1 t; € Persistent_Set_Satisfying Proviso(s,), by lemma 6.8, ¢ is independent with all
transitions in w. Therefore, w is a sequence of transitions from s in Ag. Moreover, by
Lemma 6.9, we know that [w]s, D [w]s;. Since none of the first transitions of sequences in
[w]s, are in s,.Sleep and since none of them are executed from s,, none of the first tran-
sitions of sequences in [w], are in the sleep set s.Sleep that is associated with s after the
execution of ¢ from s,,. Since s € Stack, when s,, is backtracked, s has already been vis-
ited with the sleep set s.Sleep, and has already been backtracked. Consequently, none of
the first transitions of sequences in [w]s are in H(s).Sleep (since H(s).Sleep C s.Sleep).
By applying the inductive hypothesis to state s with w as sequence of transitions in Ag,
we know there exists a state s’ in Ap such that s % o and s’ B ¢ in Apr where t;
denotes one of the transitions ¢;, [ww'], = [w'w], from s in Ag, and if we note w; = t;wj,
for all the first transitions ¢, of a w! € [w}]s, t. & s".Sleep, where s".Sleep denotes the
sleep set associated with s” after the execution of ¢; from s’. Since t is independent with
all transitions in w, we have [tw'w],, = [tww']s, = [wtw'];,. Consequently, the lemma
holds in s,,.

Finally, consider the case where s, has already been backtracked during the search.
Let Hyq(s,).Sleep be the sleep set stored with s, in H the previous time s, was
backtracked. We know that H(s,).Sleep C H,q4(s,).Sleep (the sleep set stored with
a state can only shrink between successive visits of that state). If for all transitions
tist; & Hoa(sy).Sleep, the inductive hypothesis can be applied to state s, already back-
tracked with Hyyq(sy,).Sleep as sleep set stored with it in H, which directly proves
the lemma for state s, with H(s,).Sleep. Else, there exists a transition ¢; such that
ti € Hyq(sn).Sleep. Since t; ¢ H(s,).Sleep, t; has been removed from H,4(s,).Sleep,
and has been executed from s,, during the last visit of s,,. If there are several such transi-
tions t;, consider the first one ¢; which has been executed at this last visit. Let s” be the
state reached after executing t; from s,. The sleep set s”.Sleep associated with s” after
the execution of ¢; from s, is computed from the sleep set H(s,).Sleep, which does not
contain any transitions t;. Therefore, by applying the same reasoning as the one done
above for s;, one concludes that the lemma holds for s, with H(s,).Sleep. m

Theorem 6.11 Let s be a state in the reduced state space Ar explored by the algorithm
of Figure 6.2. Let H(s).Sleep denote the sleep set stored with s in H once the search is
completed. Let w be a sequence of transitions from s in Ag. For all w; € [w], from s in
Ag, let t; denote the first transition of w;. If none of the t; are in H(s).Sleep, then there

exists a sequence w' of transitions from s in Ag such that w € Pref([w']s).

www.manaraa.com

92 CHAPTER 6. VERIFICATION OF SAFETY PROPERTIES

Proof:

The proof proceeds by induction on the length of w. For |w| = 0, the result is
immediate. Now, assume the theorem holds for paths (sequences of transitions) of length
n > 0 and let us prove that it holds for a path w of length n + 1. For all w; € [w], from
sin Ag, let t; denote the first transition of w;.

Once the search is completed, all states in A have been backtracked. By applying
lemma 6.10 to state s, we know that there exists a state s’ in Ag such that s LGN
in Ap where ¢; denotes one of the transitions t;, [ww'|, = [w'w], from s in Ag, and if
we note w; = tyw}, for all the first transitions ¢! of a w! € [w}]s, t. ¢ H(s").Sleep.
This implies that w is a sequence in Ag from all intermediate states reached by w'
from s, including s’. From the successor state s” of s’ by ¢, there is a sequence w}
in Ag such that w; = tjw] € [w]y. Since |w}| = n, and since V&, : t; ¢ H(s").Sleep,
by applying the inductive hypothesis to state s”, we know there exists a sequence w”
explored from s” in Ap such that w} € Pref([w"]s). In other words, there exists a
sequence w"” from s” in Ag such that " € [w"]! and w" = wiwg,ss. From state s, we
know that the sequence w't;w” is explored in Ag. From s, we have in Ag: [w't;w"], =
w'tiw"], = [Wthwiwssrls = [Wwwssrls (since [w]y = [tw!]y) = [ww'ws,ss]s (since
[w'w]; = [ww'];). Obviously, w € Pref([ww'ws,yssls), and thus w € Pref([w'tiw"],),
w'tyw” being explored in Ag from s. m

We can now easily prove the following.

Theorem 6.12 Let Ag be the global state space of a given system, and let Ag be the
reduced state space explored by the algorithm of Figure 6.2 for this system. Then, Ag is

a trace automaton for the system considered.

Proof:

By applying Theorem 6.11 in the initial state s, of Az and by Definition 6.4, one
directly obtains that Ag is a trace automaton, since H(sg).Sleep = 0. m

6.4 Properties of Trace Automata

Many interesting properties of a concurrent system can be checked on a trace automaton

for this system.

Theorem 6.13 Let Ag be the global state space of a system, and let Ar be a trace
automaton for this system. For allt € T, t is executed in Ag iff t is executed in Ag.

www.manaraa.com

6.4. PROPERTIES OF TRACE AUTOMATA 93

Proof:

Let ¢t be a transition that occurs in Ag. Therefore, there exists a sequence w of tran-
sitions from sg in A that leads to a state s in A such that s L By definition of
a trace automaton, there exists a sequence w' of transitions from sy in Ag such that w'
is a linearization of a trace defined by an extension of wt. Consequently, ¢ occurs in w’,
and thus in Ap.

The other direction of the theorem is immediate to establish since all sequences of tran-
sitions in Ap are sequences of transitions in Ag. m

The following theorem states that the reachability of local states can also be checked
on a trace automaton.

Theorem 6.14 Let Ag be the global state space of a system, and let Ar be a trace
automaton for this system. For all processes P;, for all local states | € P;, | is reachable
from the initial state so in Ag iff | is reachable from sy in Ap.

Proof:

By definition, a local state [€ P; is reachable from the initial state sq in Ag iff there
exists a global state s that is reachable from so in Ag, and such that s(i) = [. Since [is
reachable from sy in Ag, let w be the shortest sequence of transitions from sy to a state
s in Ag such that s(i) = [. We have

t1 to tn—1 tn
Sg —S1 —>S9... — Sp—1 — S.

We know that s, (i) # [, else w would not be the shortest path leading from sq to [.
Therefore, process P; is active for transition ¢,, and [€ post(t,). By Theorem 6.13, we
know that there exists a state s’ in Ap from which the transition ¢, is executed in Ag.
After executing ¢, from s, a state s” such that s”(i) = [is reached in Ap.

The other direction of the theorem is immediate to establish since all states in Ap are
states in Ag. ®

Therefore, transitions that are never executed (dead code) can be checked for on a
trace automaton. Moreover, checking if a given condition ¢, often called an assertion, is
true in a particular local state [of a process P; can be done by adding a new local state
lerror to P; and a new transition (I, Not(c), skip, leyror) to the system. Then, exploring a
trace automaton for the modified system is sufficient to prove that such assertions are
never violated. Many properties can be expressed by using assertions, like for instance,
buffer overruns (i.e., attempts to send a message to a full queue), unspecified receptions,
etc. Of course, adding transitions to a system introduces dependencies between these

added transitions and other transitions, and has to be done as carefully as possible.

www.manaraa.com

94 CHAPTER 6. VERIFICATION OF SAFETY PROPERTIES

Global properties, i.e., properties that involve more than one process, can be checked
by making them local as follows. If a property is not local to a process, one introduces an
additional process in the system to which it is local. For instance, checking an invariant,
i.e., if a given condition inv remains true in all states of Ag, can be done by adding a
process P; = {1, lorror } With a single transition (I, Not(inv), skip, leprer) testing the truth
value of the condition nwv.

More generally, the verification of any safety property can be reduced to checking the
reachability of a local state as follows [GW91b|. Safety properties can be represented by
prefix closed automata on finite words [AS87]. We assume such a representation Ag and

proceed as follows:

1. Build the automaton A_g corresponding to the complement of Ag. Since Ag is

prefix closed, A_g is an automaton with only one accepting state (denoted X).

2. Check if the local state X is reachable in the new concurrent system composed of

the original system and of the automaton A_g.

Therefore, the verification of any safety property can be performed using a trace automa-
ton Agi. Note that this framework is still applicable for safety properties represented by

more than one automaton A_g.

6.5 Comparison with Other Work

In [Val91], another “proviso” is given to be used with the (strong) stubborn set technique
in order to check for properties more elaborate than deadlocks. More generally, this
proviso can actually be used with all the algorithms computing persistent sets presented

in Chapter 4, not only with the stubborn set algorithm of Section 4.5.

This proviso requires the detection of terminal maximal strongly connected compo-
nents (TMSCC) in the explored reduced state space Ag, viewed as a directed graph. A
part G of Ag is a strongly connected component in Ap if all states in GG are reachable
from all states in G. A strongly connected component in Ag is said to be maximal if
it is not included in any other strongly connected component. A strongly connected
component G is said to be terminal if there is no outgoing transition from it, i.e., if there
is no state not in GG that is reachable from a state in G. Checking maximal strongly
connected components in a directed graph can be done by using the well-known algo-
rithm of Tarjan [Tar72, AHUT74|. This algorithm is based on a depth-first search in the
graph. Its time complexity is linear in the size of the reduced state space Ag. It requires
the use of an additional stack and the storage of the value of a variable “DFNUMBER”,

www.manaraa.com

6.5. COMPARISON WITH OTHER WORK 95

which labels the reachable states in the order they are visited, with each state stored
in randomly accessed memory. (See, e.g., [AHU74] for a complete presentation of this

algorithm.)

The proviso of [Val91] consists in the following modification of the classical persistent-
set selective search mot using sleep sets, as shown in Figure 4.1 and performed in a
depth-first order. In the following definition, the “root” of a TMSCC denotes the last
state in the TMSCC that is backtracked during the depth-first selective search.

Definition 6.15 Each time a state s is backtracked during the search performed by
the algorithm of Figure 4.1, if s is the root of a terminal maximal strongly connected
component TMSCC in Ag, and if there are transitions ¢t that are enabled in s and never
executed from any state in TMSCC, then another persistent set in s that contains at
least one of such transitions ¢ is computed, and the search continues from s to explore
the transitions of this new persistent set that have not already been explored from s. m

Since the union of two persistent sets in s is a persistent set in s (it is easy to see this from
the definition of persistent sets), this proviso is also equivalent to a restriction on the per-
sistent sets that can be returned by the function Persistent_Set in a persistent-set selective
search. Indeed, everything happens as if the value of Persistent_Set(s) was computed by
successive approximations during the exploration of Ag (the value of Persistent_Set(s) is
augmented if s is currently the root of a TMSCC).

It can be proved that the following theorem holds in all states in the reduced state
space A explored by a persistent-set selective search using the above proviso (similar to
Theorem 2.29 of [Val91]).

Theorem 6.16 Let Ag be the global state space of a system, and let Ag be the reduced
state space explored by a persistent-set selective search, as shown in Figure 4.1, using the
proviso of Definition 6.15. Let s be a state in Ag. For all sequences w of transitions from

s in Ag, there exists a sequence w' of transitions from s in Ar such that w € Pref([w'],).

Obviously, reduced state spaces A that satisfy the above theorem are trace automata.
But the converse is not true, since the above theorem holds in all states in Ag, while
the definition of trace automata requires that it holds only in the initial state sy of
Apg. Therefore, the above theorem is stronger than is necessary for proving all the
properties considered in the previous Section. The notion of trace automaton is weaker
while sufficient for checking these properties, and thus allows more reduction in Ag.

Note that the proviso of Definition 6.2 can also be used without sleep sets, i.e., in

conjunction with a. persistent-set selective search, as shown in Figure 4.1. In this case,

www.manaraa.com

96 CHAPTER 6. VERIFICATION OF SAFETY PROPERTIES

the first condition of the proviso of Definition 6.2 merely becomes that the set Persis-
tent_Set(s) returned by the function Persistent_Set has to contain at least one transition
not leading to the current Stack, and the “weakly uniform” assumption on the depen-
dency relation used is no longer necessary. Indeed, by considering again the proofs given
in Section 6.3 in the case where all sleep sets are always empty, one directly obtains a
proof that the reduced state spaces Ar explored by a persistent-set selective search using

this modified proviso are trace automata, and, moreover, that they satisfy Theorem 6.16.

In the case where sleep sets are not used, which one of these two provisos is then the
“best”? If the explored reduced state space Ar does not contain any terminal maximal
strongly connected components T'MSCC' such that there are transitions ¢t that are en-
abled in a state in TMSCC' and never executed from any state in TMSCC, then the
proviso of Definition 6.15 will not force the selection of any additional transition, and its
impact on A will be void; on the other hand, the proviso of Definition 6.2 modified as
described above might force the selection of additional transitions if Ag contains cycles.
If during the search there are terminal maximal strongly connected components TMSCC
such that there are transitions ¢ that are enabled in a state in TMSCC and never ex-
ecuted from any state in TMSCC, both provisos will force the selection of additional
transitions and will have an impact on Ag. In this case, it is impossible to predict which
proviso will yield the smaller Agr. Indeed, intuitively, the additional transitions forced
by the proviso of Definition 6.2 will be executed from the first backtracked state of the
TMSCC, while the additional transitions forced by the proviso of Definition 6.15 will be
executed from the root of the TMSCC, i.e., the last backtracked state of the TMSCC.
Hence, the two A that are obtained will then not be comparable in general (in the sense
that one of them is not included in the other). Consequently, there is no “best” proviso:
overall, it is impossible to predict which proviso will explore the smaller reduced state

space.

Note that the proviso of Definition 6.2 is much simpler to implement than the proviso
of Definition 6.15. Moreover, it does not require the use of any additional data structure.

Finally, note that the proviso of Definition 6.15 is not compatible with sleep sets.

In [GW91b, GW93|, the reachability of a local state [of a process P; (and hence
the verification of any safety property) is reduced to the deadlock detection problem
by a transformation of the system description. This transformation consists of adding
transitions in the original system (see [GW91b]). The new dependencies introduced in
the system by these additional transitions ensure that if the local state [one is interested
in is reachable from the initial state s, it will be visited during a selective search, without
the need of any proviso.

It is not known whether the method of [GW91b] gives better reductions than the use

of the proviso of Definition 6.2. An advantage of using a proviso during a selective search,

www.manaraa.com

6.5. COMPARISON WITH OTHER WORK 97

and thus of generating a trace automaton, is that many properties (assertion violations,
dead code, deadlocks, etc.) can be checked simultaneously during the same selective
search. On the other hand, the transformation of the system described in [GW91b]
depends on the local state [to be checked: the transitions that are added to the system
during this transformation are there to prevent the selective search from missing [, if it is
reachable, but are not sufficient for checking any other local states than [. The method
of [GW91b] is thus more goal-oriented.

Finally note that the proviso of Definition 6.2 is simpler to implement than the system
transformation of [GW91b)].

www.manharaa.com

98 CHAPTER 6. VERIFICATION OF SAFETY PROPERTIES

www.manharaa.com

Chapter 7

Model Checking

7.1 Beyond Safety Properties

Safety properties cover most of the properties of concurrent reactive systems that are
verified in practice. It is nevertheless worth studying how partial-order methods can be
adapted for checking liveness properties. Intuitively, whereas a safety property stipulates
that “bad things” do not happen, a liveness property stipulates that “good things”
do eventually happen [Lam77]. For instance, a liveness property can specify that each
process of a concurrent system must always be able to eventually progress from its current
local state. Such a property cannot be checked by only considering the finite behaviors
of the system, as is the case for a safety property. Indeed, only infinite behaviors of the

system can violate the above property.

Representing liveness properties and checking infinite behaviors of concurrent systems
require the use of concepts and algorithms that are more complex than those for veri-
fying safety properties. In this Chapter, we discuss various techniques [Val90, GW91a,
Pel93, Val93, Pel94, GW94] that have been proposed for the verification of liveness prop-
erties in the context of partial-order methods. Specifically, these techniques address the
model-checking problem for linear-time propositional temporal logic [MP92]. Linear-time
temporal-logic formulas can be used for specifying properties of infinite behaviors of a sys-
tem, including arbitrary liveness properties. Given a concurrent system and a linear-time
temporal-logic formula f, checking that all infinite computations of the system satisfy f

is referred to as the model-checking problem.

The techniques presented in [Val90, GW91a, Pel93, Val93, Pel94, GW94] differ by the
assumptions they make about the representation of the property to be checked, and by
the verification strategies they adopt. In this Chapter, we briefly present these tech-
niques, and relate them with each other. We point out the key problems underlying the

99 www.manaraa.com

100 CHAPTER 7. MODEL CHECKING

verification of liveness properties using partial-order methods, and compare the solutions
that have been proposed for solving these problems. We also show how the proposed
techniques complement each other.

7.2 Automata and Model Checking

To solve the model-checking problem, the only fact we need about linear-time temporal
logic is that, for each formula f, it is possible to build a Bichi automaton Ay that accepts
exactly the infinite words satisfying the temporal formula f [WVS83]. Formally, a Biichi
automaton[Biic62] is a tuple A = (3, S, A, sq, F'), where

e X is an alphabet,

e S is a set of states,

e A C S xXY¥ xS is a transition relation,
® 59 € S is the initial state, and

e ' C S is a set of accepting states.

A Biichi automaton is thus an automaton as defined in Section 2.2 augmented with a
set F' of accepting states. Biichi automata are used to define languages of w-words, i.e.,
functions from the ordinal w to the alphabet Y. Intuitively, a word is accepted by a Biuichi
automaton if the automaton has an infinite execution that intersects set F' infinitely often.
Formally, we define a computation o of A over an w-word w = aqa, ... as an w-sequence
o = S, S1,... (i.e., a function from w to S) where (s;_1,a;, ;) € A, foralli > 1. A
computation o = sg, sy, ... is accepting if there is some state in F' that repeats infinitely
often, i.e., for some state x € F' there are infinitely many ¢ € w such that s; = x. The

w-word w is accepted by A if there is an accepting computation of A over w.

A construction of a Biichi automaton A, from a formula f can be found in [Wol89] and
in Chapter 4 of [Tha89]. This construction is exponential in the length of the formula,
but this is usually not a problem since the formulas to be checked are quite short and

since the algorithm often behaves much better than its upper bound.

The verification procedure can then be the following [WVS83, VW86]. (This procedure
is often referred to as the automata-theoretic approach to model-checking.)

1. We first build a Biichi automaton for the negation of the formula f. The resulting
automaton Ay = (X, S_;, Ay, so-f, F.s) accepts all sequences of states that

violate f.

www.manaraa.com

7.2. AUTOMATA AND MODEL CHECKING 101

2. Then we compute the product automaton Ag of the original system and of the
automaton A_; in such a way that the product automaton accepts all infinite
computations of the system that are accepted by the automaton Ay, i.e., all com-
putations of the system that violate the formula f.

3. Finally, we check if the automaton Ag is empty, i.e., if it does not accept any
sequence. If Ag is empty, we have proven that all infinite computations of P
satisfy the formula f.

Of course, if the negation of the property A_; is directly provided by the user, the first
step of the above procedure can be skipped.

Checking if the Biichi automaton Ag is nonempty amounts to checking if there exists
a cycle in Ag (viewed as a graph) that is reachable from the initial state sy and that
contains an accepting state. Actually, it is not necessary to consider all possible cycles
in Ag, it is sufficient to check if A contains at least one maximal (nontrivial) strongly
connected component that is reachable from the initial state and that includes a state
from the set F'. Equivalently, a Biichi automaton is nonempty if it has some accepting
state that is reachable from the initial state and reachable from itself. Several algorithms
can be used for checking emptiness of Biichi automata (see [GH93] for an overview),
which can be done in linear time with respect to the size of the Biichi automaton. Note
that computing Ag and checking its emptiness can be done at the same time.

Different definitions are possible for the product automaton Ag. In [GW9la, Val93|,
it is assumed that the automaton A-; is an additional process that synchronizes with
the other processes of the system on transitions that have the same label, i.e., the same
“action”. Precisely, if Ag,; denotes the global state space of the concurrent system
being verified, the product automaton Ag of the system Agys = (Xgys, Ssysy Asyss Sosys)
and of the new process Ay = (X5, S-f, A_y, Soof, F-s) is the Biichi automaton Ag =
(3, S, A, sq, F) defined by

¢ X =3, US,.
o S =Ss,, % 5.,
((s,t),a, (u,v)) € A when

— a € Xgys NX_y and (s,a,u) € Agys and (t,a,v) € A_y,
— a € Xgys \ Boy and (s,a,u) € Agys and v =1,
—a€X ;\Xsys and u = s and (t,a,v) € Ay,

® Sg = (SOSysa SOﬂf)a

A= S.S'ys X Fﬂf.

www.manaraa.com

102 CHAPTER 7. MODEL CHECKING

Actions that appear both in Ag,s and in A_; are synchronized, others are interleaved.
Transitions of Ag,s that synchronize with A_; are said to be wisible. In this framework,

transitions of the system and of the property are “synchronized on actions”.

In contrast, it is assumed in [Val90, Pel93, Pel94] that the automaton A_; is a special
automaton whose transitions test the values of the variables of the system whenever
the system executes a transition. Precisely, if Ag,, denotes the global state space of
the concurrent system being verified, the product automaton Ag of the system Ag,, =
(Xsyss Ssyss Asys, Sosys) and of the automaton Ay = (X5, S-p, ALy, soop, Fly) is the
Biichi automaton Ag = (%, S, A, so, F') defined by

o Y = Z_‘f,
e S— SS’ys X S_‘f,

((s,w),a,(u,v)) € A when (s,t,u) € Agys, (w,a,v) € A_y and a evaluates to true
in state s of Agys,

So = (S[)Sysa SUﬂf)a

o F=Sg, x F.

Transitions of the system that can affect the truth value of any state predicate appearing
in the formula are said to be wisible. In this framework, transitions of the system and of
the property are “synchronized on states”.

Note that the automata-theoretic approach to model checking has the advantages of
“on-the-fly verification”. By this, we mean that we build the automaton Aq for the com-
bination of the system and the property without ever building the automaton Ag,, for the
system. Maybe surprisingly, the product automaton can be smaller than the automaton
for the system alone because the property acts as a constraint on the behavior of the sys-
tem. This approach of model checking thus has a head start over other approaches that
require the automaton Agys to be built. In the context of partial-order methods, we will
see that another advantage of the automata-theoretic approach is that the structure of
the automaton A_; and its current local state can be exploited by partial-order methods
to guide the selective search, and thus to improve its efficiency. The combination of on-
the-fly verification with partial-order methods first appeared in [GW91a], and was later
adopted in [Val93, Pel94] (the techniques of [Val90, Pel93] did not follow this paradigm).

7.3 Using Partial Orders for Model Checking

In practice, the limits of all model-checking methods come from the often excessive size

of the product Ag. In order to use partial-order methods for doing model checking, we

www.manaraa.com

7.3. USING PARTIAL ORDERS FOR MODEL CHECKING 103

would like to be able to proceed as follows.

1. Build a Biichi automaton for the negation of the formula f. The resulting automa-
ton is A-y.

2. Compute a trace automaton Ag corresponding to the concurrent executions of the
processes of the system, and of the automaton A-;.

3. Check if the automaton Ap is empty.

Note that the temporal property represented by A-; can be sensitive to the order of
independent transitions of the system. In the framework where transitions of the system
and of the property are synchronized on actions, the fact that the order of actions that
appear in A_y cannot be ignored while exploring the reduced state space is handled by
treating Ay as any other process of the concurrent system [GW91al.

In the framework where transitions of the system and of the property are synchro-
nized on states, the problem can be solved by considering all visible transitions (i.e., all
transitions that can affect the truth value of any state predicate appearing in the for-
mula) as being dependent, and by restricting the class of properties that can be checked
to stuttering-invariant properties [Val90]. Informally, stuttering-invariance means that
the truth value of a formula on an infinite sequence of states does not change if states
in the sequence are repeated a finite number of times [Lam83|. Prohibiting stuttering
is important in this framework since, without this restriction, all transitions could po-
tentially affect the truth value of the formula, and hence would have to be considered
as dependent, which would annihilate any benefit coming from the use of partial-order
methods. In linear-time temporal logic, a simple way to restrict the properties that can
be expressed in the logic to stuttering-invariant properties is to disallow the use of the

“next” temporal operator [Lam83].

Once the above requirements are satisfied, can a trace automaton Ag for the system
replace the product Ag for model checking?

It was shown in [GW91a] that a trace automaton Ag can be used for checking that all
infinite behaviors of the system that contain an infinite number of occurrences of visible
transitions satisfy the given property. In this case, verifying liveness properties can thus

be done on the same reduced state space as for verifying safety properties.

If one is also interested in considering the infinite behaviors of the system that contain
only a_finite number of occurrences of visible transitions, using a trace automaton is not
sufficient. It is then necessary to preserve more states and transitions in the reduced

state space explored by a selective search. Several provisos have been proposed for this

www.manaraa.com

104 CHAPTER 7. MODEL CHECKING

purpose. These provisos thus also preserve in Ag the presence of at least one cycle of

invisible transitions that passes through an accepting state, if there exists one in Ag.

The first such proviso that has been proposed [Val90] was intended to be used in
conjunction with the stubborn set technique (cf. Section 4.5), but can actually be used

with other persistent-set algorithms as well. This proviso requires that:

1. at each state s reached during the search, if there is an enabled invisible transition,

at least one invisible transition is executed from s in Ag; and

2. every cycle in Ag contains at least one state s that satisfies the following condition:
the transitions explored from s in Ag are the enabled transitions of a stubborn set

containing all visible transitions.

Intuitively, the first requirement preserves in Ag cycles of invisible transitions, while the
second requirement ensures that, when exploring these cycles, visible transitions are not
“ignored”. In [Val90], an algorithm is given to detect cycles in Ap that do not satisfy
Requirement 2 above. When such a cycle is detected, this algorithm forces the selection
of new transitions from one of the states in the cycle to make it satisfy Requirement 2.

Another solution to satisfy Requirement 2 is to systematically select at each visited
state the enabled transitions in a stubborn set containing all visible transitions [Val93].
However, this radical solution is very restrictive since it always forces the selection of
a very specific type of persistent set at each visited state. This prevents the selection
of many other persistent sets, including smaller ones, which is strongly in contradiction
with the heuristics presented in Chapter 4. Therefore, the practicality of this solution
seems problematic.

Yet another solution to ensure Requirement 2, presented in [Pel94], is to prevent the
selective search from closing cycles except from states where all enabled transitions are
executed. In other words, at each visited state, the selected persistent set either has to
contain exclusively transitions not leading to the current Stack, or has to be the set of
all enabled transitions. This proviso can thus be viewed as a more restrictive version of

the proviso of Definition 6.2, which was used for verifying safety properties.

Due to the lack of experimental data, it is not known how the performances of these

different provisos for ensuring Requirement 2 compare with each other.

Note that, when model-checking is performed on-the-fly, it is possible to optimize
the selective search by using information about the current local state of A_; and the
next transitions that can be executed from it. In the framework where transitions of the
system_and of the property are synchronized on actions, it is shown in [Val93] that it
1s necessary to ensure the first requirement only when the current local state of A-; is

accepting, while it is necessary to enforce a proviso for ensuring Requirement 2 only when

www.manaraa.com

7.4. MODEL CHECKING WITH FAIRNESS ASSUMPTIONS 105

the current local state of A is not accepting. In the framework where transitions of
the system and of the property are synchronized on states, it is shown in [Pel94] how the
transitions outgoing from the current local state of A can be used to limit the number
of transitions that need be explored.

7.4 Model Checking with Fairness Assumptions

It is useful in verification to take into account specific assumptions about the context in
which processes of a concurrent system are executed. For instance, if concurrent processes
are executed on different processors, it is customary to assume that, if a process has a
transition that remains enabled, it will eventually execute it. This assumption is often
referred to as weak fairness [MP92]. Various notions of fairness have been studied [Fra86,
MP92]. The main purpose of these notions is to exclude behaviors of the concurrent
system that would not be allowed by the specific type of process scheduler that is assumed.
The fairness assumptions then act as filters, removing certain classes of infinite behaviors
that conflict with the assumptions made about the process scheduler.

Like liveness properties, fairness assumptions can be modeled by linear-time temporal-
logic formulas [LP85], or by Biichi automata [ACW90]. If fairness assumptions are mod-
eled by a formula f’, the verification problem amounts to checking that all infinite behav-
iors of the system satisfy the formula f' O f (where D denotes logical implication), which
can be done as described in the previous section. If fairness assumptions are modeled
by Biichi automata Ay, that are synchronized with the processes of the system', the
definition of the product automaton Ag of the system, of the automata Ay,;,, and of the
automaton A_; slightly differ from those given in Section 7.2 (since there are now several
Biichi automata in the product), but the verification problem can be reduced again to
checking the emptiness of Ag [GW9la].

At first glance, the interaction of the modeling of fairness assumptions and of partial-
order methods is problematic since fairness assumptions often concern all processes in-
volved in the system and hence may introduce many dependencies, which can wipe out
the benefit of using partial-order methods. A solution to avoid this problem is to repre-
sent fairness assumptions in a distributed way, by assigning progress conditions to each
process individually [GW91la]. This is equivalent to model fairness assumptions by a
set of Biichi automata such that each Biichi automaton synchronizes with at most one
process in the system. Such a way, fairness assumptions do not introduce any additional

dependency among the transitions of the concurrent system [GW91al.

! Another similar possibility is to directly specify acceptance sets for the processes in the system, thus
to define the system as:being a product of Biichi automata [ACW90].

www.manaraa.com

106 CHAPTER 7. MODEL CHECKING

Note that the product of two Biichi automata accepts the intersection of the lan-
guages accepted by these two automata, and hence its effect is equivalent to a logical
conjunction in temporal logic. Consequently, the translation of the solution given above
in the temporal logic world becomes that, if a formula f is a conjunction of sub-formulas
fi, transitions of the system that can affect sub-formula f; need not be considered as
being dependent with transitions that can affect sub-formula f;, with k # [, although
these transitions are all visible. This observation also appeared in [Pel93] where it is
recommended that each temporal-logic formula to be checked should be rewritten in an
equivalent form with as many as possible boolean operators at the outermost levels of
the formula, in order to express it as a conjunction of sub-formulas, which can then be
treated separately when adding dependencies among visible transitions of the concurrent

system.

Once the above requirements are satisfied, can a trace automaton Ag for the system
replace the product automaton Ag for model checking with fairness assumptions? The
answer to this question is negative because infinite computations involving more than
one process are not necessarily preserved in Ap [GW9la]. Indeed, it is quite possible
that the automaton Ag accepts some fair behavior of the system whereas Ar does not
accept any fair behavior. This might seem counter-intuitive because one could expect
that, if A; accepts some word w, then by permuting independent transitions of w, one
would obtain an accepting computation of Ag, which would then be nonempty. This is
actually true for finite computations but not for infinite computations. Indeed, consider
two processes that are totally independent. A trace automaton for these two processes
can be one that allows any number of transitions of the first process followed by any
number of transitions of the second process. This is is fine for finite computations, but
for infinite computations, one will be left with either an infinite computation of the first
process or one of the second process, but not an infinite computation of both processes.
One can summarize this by saying that A represents the infinite computations of all

processes, but not the joint infinite computations of unsynchronized processes [GW91a].

Trace automata do not adequately represent the w-computations of the components
from which they are built because infinite computations cannot be concatenated. Ac-
tually, with the help of a little abstraction, infinite computations could very well be
concatenated. One can simply think of computations whose length is an ordinal larger
than w. This idea has been investigated in [GW91a, GW94]. Precisely, automata operat-
ing on words of length w x n, n € w, were defined and studied. It was shown that, when
they are viewed as w X n-automata, trace automata can be used for model checking with
fairness assumptions. However, it is necessary to use a new model-checking algorithm,

that checks for sequences of strongly connected components in trace automata.

Instead of using.trace automata and a new, more complicated, model-checking algo-

www.manaraa.com

7.4. MODEL CHECKING WITH FAIRNESS ASSUMPTIONS 107

rithm, another solution consists in using an additional proviso during state-space explo-
ration that ensures that enough states and transitions are preserved in the reduced state
space Ag to make possible the use of classical model-checking algorithms on Agr. This is
the approach adopted in [Pel93, Pel94], where a proviso is given for model-checking with
fairness assumptions. This proviso forces the traversal of “fair cycles” by preventing the
selective search to close cycles except from states from which all enabled transitions are

executed. This proviso increases the size of the reduced state space that is explored, but

is easy to implement.

www.manharaa.com

108 CHAPTER 7. MODEL CHECKING

www.manharaa.com

Chapter 8

Experiments

8.1 How Can Partial-Order Methods Be Evaluated?

How much can one gain by using the methods described in this thesis? It is very dif-
ficult to give a general answer. Indeed, one can quite easily construct families of sys-
tems for which nothing is gained whatsoever. Examples of such systems are systems
where the coupling between the processes is so tight that two independent transitions
are never simultaneously enabled. (The system is in fact purely sequential.) In this case,
partial-order methods yield no reduction, and the selective search becomes equivalent to
a classical exhaustive search.

On the other hand, it is also easy to construct systems for which the growth of the state
space when the number of processes in the system increases is reduced from exponential to
polynomial by a selective search. This is the case, for instance, for the dining-philosophers
system of Section 2.3. The number of states in the global state space Ag and in the
reduced state space Ag explored by a selective search using persistent sets and sleep sets
(without proviso) are given in Figure 8.1 for various numbers of philosophers (logarithmic
scale).

Going one step further, it is also easy to find examples of systems for which the global
state space increases in size when the value of some parameter grows, while the reduced
state space remains the same. For instance, consider the following “producer-consumer”

example.

Example 8.1 Consider a system containing a process “producer” P = {po} and a pro-
cess “consumer” C' = {¢g}, an object “bounded FIFO channel” of size N = 1000, denoted
gy as consideredrintExamples 3.20 and 4.29, and two transitions

t1 = (po. Not(Fuli(q)), Send(q, m),po), ts = (co, Not(Empty(q)), Receive(q), o),

109 www.manaraa.com

110 CHAPTER 8. EXPERIMENTS

States

1le+06 F T T T T
100000
10000

1000

100

106

1 I | | | |
2 4 6 8 10 12

Philosophers
Figure 8.1: Reduction due to partial-order methods for dining philosophers

where it is assumed that Send(q, m) denotes a command that performs a Send operation
on the object ¢ with m as input, Receive(q) denotes a command that performs a Receive
operation on the object ¢ (the output of the Receive operation on ¢ is discarded here),
Full(q) denotes a boolean condition equivalent to the value returned by the execution
of a Full operation on object ¢, and Empty(q) denotes a boolean condition equivalent
to the value returned by the execution of an Empty operation on object ¢q. Let sy =
(pos co, () € P x C xV, be the initial state of the producer-consumer system (g is initially
empty). Let us investigate what the reduced state space Ar explored by a selective search
using persistent sets could be. In state sg, only transition t; is enabled. After executing
this transition, state s; = (po, co, (m)) is reached. In state s;, both transitions ¢; and ¢,
are enabled. Moreover, the set {t,} is a persistent set in s;. After executing ¢, from sy,
state sg is reached again, and the exploration of Ag stops. This reduced state space Agr
is shown in Figure 8.2. Dotted transitions are not in Ag. Clearly, Ar is independent of
the value of N, while the size of Ag is proportional to N. If N = oo, i.e., if the channel
(buffer) is unbounded, Ag is finite, while the global state space Ag is infinite. m

Clearly, by a biased choice of examples, an arbitrarily exaggerated impression of the
improvements could thus be suggested. For instance, by setting the number of philoso-

phers to.a sufficiently large number, we can claim that we can check systems with astro-

www.manaraa.com

8.2. A PARTIAL-ORDER PACKAGE FOR SPIN 111

t1 ty
(po, co, () (po, co, (M) (po,co, (mm))| — _— _
_/ \ g
to tg

Figure 8.2: Reduced state space for the producer-consumer problem

nomical numbers of states, like 10?° states, as is done in [BCM*90]. With the producer-
consumer example, we can even claim to be able to check systems with infinite numbers
of states. Of course, this should be taken with a grain of salt since the fact that checking
only a small part of such enormous state spaces is sufficient only indicates that most of
the states in the global state space are uninteresting. This observation leads us to the
following conclusion: the number of states in the global state space of a system does not

give a good measure of its complexity.

Along the same line of thought, the study of the asymptotic behavior of the function
giving the number of states for different numbers of processes in a system is only of
limited practical interest. Indeed, state-space exploration techniques are rarely used to
verify systems composed of tens of identical processes. For such systems, it is preferable
to use other verification techniques specially tailored for proving properties of systems
with undefined numbers of participants (e.g., [KM89, WL89]).

Consequently, experiments with realistic examples, including industrial-size ones, ap-

pear to be the most informative approach to evaluating partial-order verification methods.

8.2 A Partial-Order Package for SPIN

In order to perform experiments on complex concurrent systems, we have implemented
(most of) the algorithms presented in the previous Chapters in an add-on package for

the protocol verification system SPIN.

SPIN is an automated verification system for communication protocols described in
the Promela language [Hol91]. Promela is a full nondeterministic guarded-command
language. Promela defines systems of asynchronously executing concurrent processes that
can interact via shared variables and message channels. Interaction via message channels

can be either synchronous (i.e., by rendez-vous) or asynchronous (buffered) with arbitrary

www.manaraa.com

112 CHAPTER 8. EXPERIMENTS

(user-specified) buffer capacities, and arbitrary numbers of message parameters. These
different types of communication can be combined. Given a concurrent system described
by a Promela program, SPIN can verify properties of the system by performing a classical
depth-first search in the global state space of the system. By default, SPIN checks for

deadlocks, dead code, and violations of user-specified assertions (cf. Chapter 6).

The partial-order package we have developed for SPIN checks by default the same
properties as SPIN does, i.e., it checks for deadlocks, dead code, and violations of user-
specified assertions. These properties are checked by exploring only a trace automaton
for the system being analyzed, instead of its global state space. The partial-order pack-
age includes the implementation of a selective search using persistent sets, sleep sets,
and the proviso of Definition 6.2, as shown in Figure 6.2. For computing persistent sets,
an algorithm similar to Algorithm 2 using the > relation presented in Chapter 4 has
been chosen to be implemented. Indeed, we showed in Chapter 4 that there is no “best”
algorithm for computing persistent sets. For the class of examples we have considered, it
turns out that Algorithm 2 provides a good trade-off between the complexity of the algo-
rithm, its additional run-time expense, and the reduction it can yield (see next Section).
The proviso of Definition 6.2 has been chosen to be implemented in the partial-order
package because of its simplicity, its efficiency (see next Section), and its compatibility
with sleep sets (and with the state-space caching technique considered in Section 8.4).
(The verification of liveness properties is not supported by the current version of the
package.)

A few minor changes to the Promela language have been made in order to make sys-
tems described in Promela compatible with the assumptions under which the algorithms
of this thesis have been developed. For instance, process creation has been forbidden,
and the use of the “atomic” Promela expression has been defined more strictly. Promela
has also been extended with two predicates Empty and F'ull on FIFO channels, for which
optimizations are implemented in the Package (cf. Chapters 3 and 4).

Our partial-order package is available free of charge for educational and research pur-
poses by anonymous ftp from ftp.montefiore.ulg.ac.be in the /pub/po-package directory.
More information on the partial-order package can be found in the README file in this

directory.

8.3 Evaluation

The partial-order package has been tested on various realistic examples of protocols'. The
aim of these experiments was to determine the type of reduction that can be expected

'We wish to thank Gerard Holzmann for providing us with several of these examples.

www.manaraa.com

8.3. EVALUATION 113

on real protocol examples when using the algorithms presented in this thesis, and to
evaluate the respective impact of these algorithms on the reduction obtained. In this

Section, results obtained with four sample protocols are detailed.

e PFTP is a file transfer protocol presented in Chapter 14 of [Hol91], modeled in 206

lines of Promela. It consists of three processes communicating via FIFO channels.

e MULOGS3 is a model of a mutual exclusion algorithm presented in [TN87], for 3
participants, modeled in 97 lines of Promela. It consists of six processes communi-

cating via FIFO channels and shared variables.

e ABRA is a model of the Abracadabra protocol presented in [Tur93|, modeled in 168
lines of Promela. It consists of four processes communicating via FIFO channels.

e DTP is a data transfer protocol, modeled in 406 lines of PROMELA. It consists of

three processes communicating via FIFO channels.
Experiments were performed using six different algorithms.

e DF'S denotes a classical search, as shown in Figure 2.1, performed in a depth-first

order.

e SLEEP denotes a selective search using sleep sets alone, as considered in Theo-
rem 5.4 (equivalent to the algorithm of Figure 5.2 when the function Persistent_Set

returns the set of all enabled transitions).
e PS denotes a persistent-set selective search, as shown in Figure 4.1.

e PS4+SLEEP denotes a selective search using persistent sets and sleep sets, as shown

in Figure 5.2.

e PS4+PROV denotes a selective search using persistent sets and the proviso of Defi-
nition 6.2.

e PS+SLEEP+PROV denotes a selective search using persistent sets, sleep sets and
the proviso of Definition 6.2, as shown in Figure 6.2.

All these algorithms can be viewed as particular cases of the general selective-search
algorithm using persistent sets, sleep sets and the proviso, i.e., PS+SLEEP+PROV. They
can be obtained in our partial-order package by turning off the use of persistent sets, sleep
sets, and/or the proviso. This is done by using appropriate options at compile-time (there
is no run-time overhead due to turning off some partial-order methods). For instance,

DFES corresponds to a selective-search where all partial-order methods are turned off.

www.manaraa.com

114 CHAPTER 8. EXPERIMENTS

Note that DFS is, on average, two times slower than the original version of SPIN. This is
due to the fact that parts of the original code of SPIN had to be modified and re-written
in order to connect the partial-order selective-search algorithms to the rest of the tool.
The new code has not been optimized.

Results of these experiments are presented in Table 8.1. All experiments were per-
formed on a SPARC2 workstation with 64 Megabytes of RAM, using the Partial-Order
Package version 3.0. For each run, the numbers of visited states and traversed transitions
are given. Time (in seconds) is user time plus system time as reported by the UNIX-
system time command. All visited states are stored in a hash table. To avoid significant
run-time penalties for disk-access, visited states can only be stored in randomly accessed
memory, i.e., in the main memory available in the computer on which the experiments are
performed. Consequently, parameter settings in all the protocols considered were chosen
to produce global state spaces that can easily be stored in 64 Megabytes of RAM. For
each run, the amount of memory used is directly proportional to the number of stored
states. Indeed, transitions are not stored in memory. Moreover, when using sleep sets,
the amount of memory used for storing sleep sets is insignificant with respect to the
overall memory requirements of the selective search, since a handful of bytes suffices to
represent one sleep set for these examples (there are at most a handful of enabled tran-
sitions in each state), while more than one hundred bytes are used to represent one state
(each state is composed of the current local state of all processes, all current variable

values, and all current message-channel contents).

From the numbers given in Table 8.1, three main observations can be made concerning
the respective impact of persistent sets, sleep sets, and the proviso of Definition 6.2 on
the reduction obtained.

o Persistent Sets yield the most important reductions on the number of wisited states.

They can also yield good reductions on the number of explored transitions.

o Sleep sets yield a less impressive reduction on the number of visited states, but yield

very good reductions on the number of explored transitions.

e Using the proviso of Definition 6.2 usually does not yield an important increase of

the number of visited states and transitions.

The last observation shows that the proviso of Definition 6.2 is an efficient solution for

verifying safety properties using partial-order methods.

As predicted by Theorem 5.4, SLEEP does not yield any reduction on the number of
visited states with respect to DF'S. For all protocols, the best reductions can be obtained
with PS+SLEEP, iel, by using simultaneously persistent sets and sleep sets. Using

www.manaraa.com

8.3. EVALUATION

115

Protocol Algorithm H Stored States | Transitions ‘ Time ‘
PFTP DFS 446,982 1,257,317 | 478.2
SLEEP 446,982 622,364 639
PS 276,722 482,722 662.7
PS+SLEEP 249,994 351,633 684.7
PS+PROV 279,808 490,228 673.8
PS+SLEEP+PROV 250,514 352,371 690.1
MULOGS3 DFS 38,181 111,668 25.3
SLEEP 38,181 38,241 30.5
PS 18,537 38,906 25.8
PS+SLEEP 17,984 18,057 26
PS+PROV 18,537 38,906 26
PS+SLEEP+PROV 17,984 18,057 26.4
ABRA DFS 149,816 372,010 494.2
SLEEP 149,816 176,469 546
PS 32,289 40,931 166.3
PS+SLEEP 27,781 34,381 155.7
PS+PROV 40,472 52,355 204.3
PS+SLEEP+PROV 36,913 46,934 204.4
DTP DFS 251,409 648,467 200.2
SLEEP 251,409 269,912 189
PS 9,904 10,351 11.3
PS+SLEEP 9,904 10,351 11.5
PS+PROV 9,904 10,351 11.4
PS+SLEEP+PROV 9,904 10,351 11.7

Table 8.1: Evaluation

www.manaraa.com

116 CHAPTER 8. EXPERIMENTS

persistent sets and sleep sets gives better reductions than using persistent sets alone in
almost all cases. For DTP, persistent sets are so good in reducing the number of states
and transitions that sleep sets are not able to improve this result (cf. the discussion of
Section 5.3.1).

These results show that using the partial-order methods developed in this thesis is
basically a no-risk improvement. In the worst case, when the reduction is not sufficient
to make up the additional run time overhead (PFTP), the selective search can be slightly
slower than a classical search, but the overall time complexity remains linear in the

number of explored transitions.

Moreover, using partial-order methods can strongly decrease both the time and the
memory resources needed to verify properties of concurrent systems (DTP). Therefore,

they can be used to verify more complex protocols.

8.4 State-Space Caching

Another observation that can be made from the results given in Table 8.1 is the following:
when using partial-order methods, and especially when using sleep sets, the number of
state matchings, i.e., the number of visited transitions minus the number of visited states,
strongly decreases. This phenomenon was already pointed out in Section 5.3.2, and can

be explained as follows.

When performing a classical search (like DFS), almost all states in the state space of
a concurrent system are typically visited several times. There are two causes for this:

1. From the initial state, the explorations of all interleavings of a single finite concur-
rent execution of the system always lead to the same state. This state will thus be
visited several times because of all these interleavings.

2. From the initial state, explorations of different finite concurrent executions may

lead to the same state.

When using partial-order methods, and especially when using sleep sets, most of the
effects of the first cause given above can be avoided, and, in many cases, most of the

states are visited only once during the selective search.

States that are visited only once do not need to be stored in memory. Indeed, the
only reason why visited states are stored in memory is to avoid redundant explorations
of parts of the state space: when a state that has already been visited is visited again
later during the search, it is not necessary to revisit all its successors. Unfortunately, it is

impossible to/determine which states are visited only once before the search is completed.

www.manaraa.com

8.4. STATE-SPACE CACHING 117

However, if most of the states are visited only once, the probability that a state will be
visited again later during the search is very small, and the risk of double work when not
storing an already visited state becomes very small as well. This enables one not to store
most of the states that have already been visited without incurring too much redundant
explorations of parts of the state space. The memory requirements can thus strongly

decrease without seriously increasing the time requirements.

State-space caching [Hol85, JJ91] is a memory management technique for storing the
states encountered during a depth-first search that consists in storing all the states of the
current explored path (i.e., those in the current depth-first search “stack”) plus as many
other states as possible given the remaining amount of available memory. It thus creates
a restricted cache of selected system states that have already been visited. Initially, all
states encountered are stored into the cache. When the cache fills up, old states that are
not in the stack are removed from the cache to accommodate new ones. This method
never tries to store more states than possible in the cache. Thus, if the size of the cache
is greater than the maximal size of the stack during the exploration, the search is not

truncated, and eventually terminates.

We have implemented such a caching discipline in the partial-order package. The
caching discipline can be used with any of the selective-search algorithms that were
considered in the previous Section. Results of experiments with different cache sizes and
the algorithms DFS, PS, and PS+SLEEP for the MULOGS3 protocol are presented in
Figure 8.3. For each run, the run time is directly proportional to the number of explored
transitions.

With DFS, these results clearly show that the size of the cache, i.e., the number of
stored states, can be reduced to approximately the third of the total number of states in
Ag without seriously affecting the number of explored transitions and hence the run time.
If the cache is further reduced, the run time increases dramatically, due to redundant
explorations of large parts of the state space. This run-time explosion makes state-space
caching inefficient under a certain threshold.

With PS, this threshold can be reduced to approximately the eighth of the total
number of states. This improvement is not very spectacular because the number of
matched states, even when using PS, is still too important (see Table 8.1). The risk
of double work when reaching an already visited state that has been removed from the

cache is not reduced enough.

With PS+SLEEP, the situation is different: there is no run-time explosion anymore.
Indeed, the number of matched states is reduced so much (see Table 8.1) that the risk
of double work becomes very small. When the cache size is reduced up to the maximal

depth of the search (this maximal depth is the lower bound for the cache size since all

www.manaraa.com

118 CHAPTER 8. EXPERIMENTS

Transitions
1.2e+4+06 T T T T T T T
+ DFS ~—
1e406 PS e
PS + SLEEP -
800000 [~ N
600000 - n
400000 - .
+
200000 - .
e — I .
0 EEO-G-HF------ B------B--- 81 | | |
0 5000 10000 15000 20000 25000 30000 35000 40000

Stored states

Figure 8.3: Performances of state-space caching for MULOG3

states of the stack are stored to ensure the termination of the search), the increase of
the number of explored transitions is still less than 10% with respect to the number of
transitions explored by PS+SLEEP when all visited states are stored in memory, i.e.,

without using state-space caching.

In other words, the MULOGS3 protocol, which has 38,181 reachable states that can be
visited by DFS in 25 seconds (see Table 8.1), can be analyzed with the same run time by
using PS+SLEEP and state-space caching while storing no more than 150 states. The
memory requirements are reduced by a factor of 200 while the run time remains the same.

Of course, the practical interest of this result is that using partial-order methods and
state-space caching together makes possible the complete exploration of very large state

spaces, that could not be explored so far.

For instance, consider two other versions of the MULOG protocol, denoted MULOG4
and MULOGS5, with respectively four and five participants. Let PS+SLEEP+Caching
denote a selective search using persistent sets, sleep sets, and state-space caching. Ta-
bles 8.2 and 8.3 present results of experiments performed on MULOG4 and MULOGH5
with the algorithms DES, PS+SLEEP, and PS+SLEEP+Caching. “Stored states” is the

number. of stored states ati the end of the search. When state-space caching is used, the

www.manaraa.com

8.4. STATE-SPACE CACHING 119

Algorithm H Stored St. | Cleared St. | Matched St. | Transitions ‘ Time ‘

DFS - B B - B
PS+SLEEP | 654,600 0 6,189 660,789 986.4
(2516.7)
PS+SLEEP+Caching || 300,000 354,676 6,198 660,874 | 1122.6
(1184.4)

Table 8.2: Verification of MULOG4

Algorithm H Stored St. | Cleared St. | Matched St. | Transitions | Time
DFS - - - - -

PS+SLEEP - - - - -
PS+SLEEP+Caching | 300,000 | 28,613,162 | 349,904 | 29,263,066 | 60,633.1

Table 8.3: Verification of MULOG5

maximum number of stored states, i.e., the size of the cache, is limited to 300,000 states.
(This number is approximately the maximum number of states that can be stored in
RAM for MULOG4 and MULOGS5 while still avoiding any paging.) “Cleared states”
is the number of times a state was removed from the cache. “Matched states” is the

number of state matchings that occurred during the search.

For MULOG4, DFS was not able to complete its search, since its global state space is
too large to be stored in (64 Megabytes of) memory. Using state-space caching with DFS
does not help, because of the run time explosion mentioned above. MULOG4 can still
be verified using PS+SLEEP, even without state-space caching. Real time as reported
by the UNIX-system time command is given between parentheses below the run time
(user time plus system time). The important difference between these two numbers for
PS+SLEEP is due to paging (storing 654,600 states of MULOG4 requires more than 64
Megabytes of RAM, so some of them had to be stored on disk).

For MULOGS5, the only algorithm that is able to completely verify the correctness of
this protocol is PS+SLEEP+Caching. The complete selective search takes approximately
17 hours, and explores 29,263,066 transitions. This means that the reduced state space
Apr explored by PS+SLEEP contains at most 29,263,066 states. The size of the global
state space Ag of MULOGS is not known, but is very likely several orders of magnitude
larger than the largest state spaces that can be explored by other existing verification

tools.

www.manaraa.com

120 CHAPTER 8. EXPERIMENTS

Note that the efficiency of the state-space caching technique can be dynamically esti-
mated during the search: if the maximum stack size remains acceptable with respect to
the cache size and if the proportion of matched states remains small enough, the run-time
explosion will likely be avoided. Else one cannot predict if the cache size is large enough

to avoid the run-time explosion.

8.5 Conclusion

Using partial-order methods is basically a no-risk improvement with respect to a classical
exhaustive search in the state space of the system being analyzed. Moreover, partial-
order methods can yield substantial improvements in the performances of the verification.
Therefore, these methods broaden the applicability of state-space exploration techniques

to more complex systems.

The reduction obtained depends on the coupling between the processes in the system.
When the coupling is very tight, partial-order methods yield no reduction, and the se-
lective search becomes equivalent to a classical exhaustive search. When the coupling
between the processes is very loose, the reduction can be very impressive. For most
realistic examples, partial-order methods provide a significant reduction of the memory

and time requirements needed to verify protocols.

It is worth noticing that partial-order methods can already yield good performance
improvements for verifying systems containing only a handful of processes. It is not
necessary to consider systems composed of tens of processes to obtain spectacular reduc-
tions. To put it in another way, the part of the state explosion due to the exploration
of all possible interleavings of independent transitions can already be very important for
systems containing only a few processes, and partial-order methods are able to get rid of
most of this explosion.

This very important point emphasizes the practical significance of partial-order meth-
ods. Indeed, most of the protocol models that are analyzed with state-space exploration
techniques typically contain only a handful of processes. The examples we have con-
sidered in Section 8.3 reflect this reality. For instance, a typical protocol example, as
illustrated in Figure 8.4, is usually composed of a few processes that communicate asyn-
chronously by exchanging messages through some communication medium, each process
being described by a long piece of sequential code, with complex interactions between

control and data.

Not only these systems are very frequent, but they are also very hard to verify: they
are complex (several hundreds lines of (Promela) code are needed to model these sys-

tems), and their state spaces are highly irregular. Specifically, their state spaces seem

www.manaraa.com

8.5. CONCLUSION 121

Figure 8.4: Typical protocol example

to be much more irregular than, for instance, those of systems composed of many iden-
tical processes (or pieces of hardware), for which symbolic verification techniques are
able to capture the regularity of the state space with the guidance of the user (see,
e.g., [BCM™190]). In contrast, for examples of the type we are considering here, existing
symbolic verification techniques turned out to be inferior to classical state-space explo-
ration algorithms [HD93]. Consequently, for this particular, though important, class of
systems, partial-order methods are one of the most successful approaches to tackle the
state explosion arising during the analysis of such systems.

For other types of systems, it is not known how competitive partial-order methods are.
For instance, it is claimed in [McM92| that partial-order methods like those presented in
this thesis would not give good reductions for asynchronous circuit models, “because of
the ubiquity of confusion in such models.” This argument is not sufficient to justify such
a claim. Indeed, it should be proved, for instance, that for all systems in a specific class
of concurrent systems (left to be defined), for all states s in the global state spaces of
these systems, the only persistent set in s is the set of all transitions enabled in s. Then,
indeed, by Theorem 5.4, the algorithms considered in this thesis will visit all reachable
states of such systems (though not necessarily all transitions in their state spaces), and
yield no reduction in the number of visited states. However, without such a proof (a
precise characterization of such a class of systems is not given in [McM92]), and without
any experimental result validating this claim, the problem is still open.

Finally, we have shown in this Chapter that using partial-order methods, and espe-
cially using sleep _sets, can_substantially improve the state-space caching discipline by
getting rid of the main cause of its previous inefficiency, namely prohibitive state match-

ing due.to the exploration of all possible interleavings of concurrent executions all leading

www.manaraa.com

122 CHAPTER 8. EXPERIMENTS

to the same state. Thanks to sleep sets, the memory requirements needed to verify large
reduced state spaces can be strongly decreased (several orders of magnitude) without se-
riously affecting the time requirements. This makes possible the complete exploration of
very large reduced state spaces (several tens of million states) in a reasonable time (one
night). Used together, partial-order methods and state-space caching significantly push

back the limits of verification by state-space exploration.

www.manharaa.com

Chapter 9

Conclusions

9.1 Summary

We have built, from the ground up, an original approach to cope with the state-explosion
problem that arises during the verification of concurrent systems by classical state-space
exploration techniques. Specifically, our approach tackles one cause of the state-explosion
problem: the modeling of concurrency by interleaving. Indeed, all interleavings of all
concurrent transitions of a system are represented in its state space. We showed that

exploring all these interleavings is not necessary for verification.

The focus of the thesis has been on developing practical and efficient selective-search
algorithms for exploring only a reduced part of the state space of a concurrent system that
is sufficient for checking given properties of this system. The algorithms we have presented
rely on the concept of independency and the properties it implies. They take advantage
of the independency between transitions to avoid exploring all their interleavings. The
interleavings of a partial-order execution were related by the notion of Mazurkiewicz’s
trace. Traces proved to be a powerful and elegant vehicle to carry out the correctness
proofs of our algorithms. Several ways to detect independency in concurrent systems

were discussed and illustrated using a general model for representing concurrent systems.

Two compatible techniques for determining the transitions that need to be explored in
a selective search were developed: persistent sets and sleep sets. Persistent sets were in-
troduced to provide an abstract characterization of a whole family of existing algorithms.
All these algorithms were shown to compute persistent sets, and were precisely compared
with each other. Then it was shown how all the previous algorithms can be improved by
using a new relation that models interactions between transitions more finely than the
existing relations. The notion of conditional stubborn set was introduced, and all the

considered algorithms were shown to be approximations of conditional stubborn sets.

123 www.manaraa.com

124 CHAPTER 9. CONCLUSIONS

The second main algorithmic technique developed in this thesis is the sleep set tech-
nique. We have described how to combine sleep sets with persistent sets, and have studied
the properties of sleep sets. Results of experiments with real protocol examples show that
not only persistent sets and sleep sets are compatible, but they are also complementary.

A simple modification of a selective-search algorithm that can be used for checking
the reachability of local states, and, more generally, for checking any safety property, was
presented. The modification consists in enforcing a simple additional proviso that ensures
that the choices between enabled independent transitions made during the selective search
are not completely unfair with respect to some processes. The notion of trace automaton
was shown to characterize the joint effect of using persistent sets and sleep sets for the

verification of safety properties.

The verification of liveness properties and, more generally, the model-checking prob-
lem for linear-time temporal-logic were then addressed. Techniques for solving these
problems were discussed and compared. It was also shown how the proposed techniques

complement each other.

The algorithms developed in the thesis have been implemented in an add-on package
for the protocol verification system SPIN. This partial-order package has been tested
on a large set of protocol examples, including the four sample examples detailed in the
previous Chapter. Results of experiments show that using the partial-order methods we
have developed is basically a no-risk improvement with respect to a classical exhaustive
search in the state space of the system being analyzed. Moreover, partial-order methods
can yield substantial improvements in the performances of the verification. The improve-
ment obtained depends on the coupling between the processes in the system. When the
coupling is very tight, partial-order methods yield no reduction, and the selective search
becomes equivalent to a classical exhaustive search. When the coupling between the pro-
cesses is very loose, the reduction in the number of explored states and transitions can be
very impressive. For most realistic examples, partial-order methods provide a significant
reduction of the memory and time requirements needed to verify protocols.

Finally, we have shown that using partial-order methods, and especially using sleep
sets, can substantially improve the state-space caching discipline by getting rid of the
main cause of its previous inefficiency, namely prohibitive state matching due to the
exploration of all possible interleavings of concurrent executions all leading to the same
state. Used together, partial-order methods and state-space caching significantly broaden
the applicability of verification by state-space exploration.

www.manaraa.com

9.2. FUTURE WORK 125

9.2 Future Work

This section indicates some directions for future research.

Tackling other causes of state explosion

In real protocols, the modeling of concurrency by interleaving is only but one cause of
the state explosion that creeps in during verification by state-space exploration. Devel-
oping techniques to tackle the other causes of state explosion (e.g., variables whose values
range over a large domain, communication channels that contain many different types of
messages, etc.), and combining them with partial-order methods is certainly worthwhile.
Simultaneously attacking the different causes of state-explosion should substantially im-
prove the efficiency and the applicability of automatic verification tools.

Verifying other properties

So far, partial-order methods have been developed for deadlock detection, for the verifica-
tion of safety properties, and for linear-time temporal-logic model checking. These three
types of properties cover most of the properties of concurrent reactive systems one would
ever wish to verify in practice. It is nevertheless interesting to study how partial-order
methods can be adapted for checking other types of properties, like properties expressed
in branching-time temporal logic or in partial-order temporal logic. A first step in this
direction is presented in [GKPP94|.

Another area for further research is the verification of “real-time” systems, i.e., systems
whose descriptions involve a quantitative notion of time. Investigations in this direction
have started recently with [YSSC93] where a verification technique for real-time systems
using partial-order methods is presented.

Other applications

State explosion is a long-standing problem, which is central to many applications in com-
puter science. Any method that can tackle this problem in a neat way is of great promise,
not only for verification but also for several other applications. We believe partial-order
methods may be useful for solving other problems than verification. Actually, any prob-
lem that can be reduced to a state-space exploration problem and where some form of
independency (commutativity) can be identified is a potential target for partial-order
methods An example 6f stich an application is planning [GK91]. Several other research

topics of this nature are also possible.

www.manaraa.com

126 CHAPTER 9. CONCLUSIONS

www.manharaa.com

Bibliography

[ACW90] S. Aggarwal, C. Courcoubetis, and P. Wolper. Adding liveness properties to
coupled finite-state machines. ACM Transactions on Programming Languages
and Systems, 12(2):303-339, 1990.

[AFdR80] K. R. Apt, N. Francez, and W. P. de Roever. A proof system for communi-
cating sequential processes. ACM Transactions on Programming Languages
and Systems, 2:359-385, 1980.

[AHU74] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and
Analysis of Computer Algorithms. Addison-Wesley, 1974.

[AS87] B. Alpern and F. B. Schneider. Recognizing safety and liveness. Distributed
Computing, 2:117-126, 1987.

[BCM*90] J.R. Burch, E.M. Clarke, K.L.. McMillan, D.L. Dill, and L.J. Hwang. Symbolic
model checking: 10%° states and beyond. In Proceedings of the 5th Symposium
on Logic in Computer Science, pages 428-439, Philadelphia, June 1990.

[Biic62] J.R. Biichi. On a decision method in restricted second order arithmetic.
In Proc. Internat. Congr. Logic, Method and Philos. Sci. 1960, pages 1-12,
Stanford, 1962. Stanford University Press.

[CES86] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite-
state concurrent systems using temporal logic specifications. ACM Transac-
tions on Programming Languages and Systems, 8(2):244-263, January 1986.

[CM8S] K. M. Chandy and J. Misra. Parallel Program Design: A Foundation.
Addison-Wesley, 1988.

[DDHY92] D. L. Dill, A. J. Drexler, A. J. Hu, and C. H. Yang. Protocol verification as
a hardware design aid. In 1992 IEEFE International Conference on Computer
Design: VLSI'in Computers and Processors, pages 522—525, Cambridge, MA,
October1992. [EEE Computer Society.

127 www.manaraa.com

128 BIBLIOGRAPHY

[Dij76] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[EF82] T. Elrad and N. Francez. Decomposition of distributed programs into commu-
nication closed layers. Science of Computer Programming, 2:155-173, 1982.

[Esp92] J. Esparza. Model checking using net unfoldings. Hildesheimer Informatik-
berichte 14/92, Univeristy of Hildesheim, 1992.

[FGM*92] J.C. Fernandez, H. Garavel, L. Mounier, A. Rasse, C. Rodriguez, and
J. Sifakis. A toolbox for the verification of lotos programs. In Proc. of the
14th International Conference on Software Engineering ICSE’1/, Melbourne,
Australia, May 1992. ACM.

[Fra86] N. Francez. Fairness. Springer-Verlag, 1986.

[GHS5] M. G. Gouda and J. Y. Han. Protocol validation by fair progress state explo-
ration. Computer Networks and ISDN systems, pages 353-361, May 1985.

[GH93| P. Godefroid and G. J. Holzmann. On the verification of temporal properties.
In Proc. 15th IFIP WG 6.1 International Symposium on Protocol Specifi-
cation, Testing, and Verification, pages 109-124, Liege, May 1993. North-
Holland.

[GHP92] P. Godefroid, G. J. Holzmann, and D. Pirottin. State space caching revisited.
In Proc. 4th Workshop on Computer Aided Verification, volume 663 of Lecture
Notes in Computer Science, pages 178-191, Montreal, June 1992. Springer-
Verlag.

[GK91] P. Godefroid and F. Kabanza. An efficient reactive planner for synthesiz-
ing reactive plans. In Proceedings of AAAI-91, volume 2, pages 640645,
Anaheim, July 1991.

[GKPP94| R. Gerth, R. Kuiper, D. Peled, and W. Penczek. A partial order approach to
branching time model checking. To appear in the Proceedings of the Third
Israel Symposium on Theory of Computing and Systems, 1994.

[God90] P. Godefroid. Using partial orders to improve automatic verification meth-
ods. In Proc. 2nd Workshop on Computer Aided Verification, volume 531
of Lecture Notes in Computer Science, pages 176185, Rutgers, June 1990.
Springer-Verlag. Extended version in ACM/AMS DIMACS Series, volume 3,
pages 321340, 1991.

www.manaraa.com

BIBLIOGRAPHY 129

[GP93] P. Godefroid and D. Pirottin. Refining dependencies improves partial-order
verification methods. In Proc. 5th Conference on Computer Aided Verifi-
cation, volume 697 of Lecture Notes in Computer Science, pages 438—449,
Elounda, June 1993. Springer-Verlag.

[Gri90] E. P. Gribomont. A programming logic for formal concurrent systems. In
Proc. CONCUR’90, volume 458 of Lecture Notes in Computer Science, pages
298-313. Springer-Verlag, 1990.

[Gri93] E. P. Gribomont. Concurrency without toil: a systematic method for parallel
program design. Science of Computer Programming, 21:1-56, 1993.

[GW91a] P. Godefroid and P. Wolper. A partial approach to model checking. In
Proceedings of the 6th IEEE Symposium on Logic in Computer Science, pages
406-415, Amsterdam, July 1991.

[GW91b] P. Godefroid and P. Wolper. Using partial orders for the efficient verification of
deadlock freedom and safety properties. In Proc. 3rd Workshop on Computer
Aided Verification, volume 575 of Lecture Notes in Computer Science, pages
332-342, Aalborg, July 1991.

[GW93] P. Godefroid and P. Wolper. Using partial orders for the efficient verification
of deadlock freedom and safety properties. Formal Methods in System Design,
2(2):149-164, April 1993.

[GW94] P. Godefroid and P. Wolper. A partial approach to model checking. Infor-
mation and Computation, 110(2):305-326, May 1994.

[HD93| A. J. Hu and D. L. Dill. Efficient verification with bdds using implicitly
conjoined invariants. In Proc. 5th Conference on Computer Aided Verification,
volume 697 of Lecture Notes in Computer Science, pages 3—14, Elounda, June

1993. Springer-Verlag.

[HGP92] G. J. Holzmann, P. Godefroid, and D. Pirottin. Coverage preserving reduction
strategies for reachability analysis. In Proc. 12th IFIP WG 6.1 International
Symposium on Protocol Specification, Testing, and Verification, pages 349—

363, Lake Buena Vista, Florida, June 1992. North-Holland.

[HK90] 7. Har'El and R. P. Kurshan. Software for analytical development of com-
mumnicationgprotocols. ATET Technical Journal, 1990.

[Hoa85 C. A. R..Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

www.manaraa.com

130 BIBLIOGRAPHY

[Hol85] G. J. Holzmann. Tracing protocols. ATET Technical Journal, 64(12):2413-

2434, 1985.

[Hol87] G. J. Holzmann. Automated protocol validation in argos — assertion proving
and scatter searching. IEEE Trans. on Software Engineering, 13(6):683-696,
1987.

[Hol91] G. J. Holzmann. Design and Validation of Computer Protocols. Prentice Hall,
1991.

[JJ91] C. Jard and Th. Jeron. Bounded-memory algorithms for verification on-the-
fly. In Proc. 3rd Workshop on Computer Aided Verification, volume 575 of
Lecture Notes in Computer Science, Aalborg, July 1991. Springer-Verlag.

[JK90] R. Janicki and M. Koutny. On some implementation of optimal simulations.
In Proc. 2nd Workshop on Computer Aided Verification, volume 531 of Lec-
ture Notes in Computer Science, pages 166-175, Rutgers, June 1990. Springer-
Verlag.

[JZ93] W. Janssen and J. Zwiers. Specifying and proving communication closedness
in protocols. In Proc. 13th IFIP WG 6.1 International Symposium on Proto-
col Specification, Testing, and Verification, pages 323—-339, Liege, May 1993.
North-Holland.

[KM89] R. P. Kurshan and K. McMillan. A structural induction theorem for processes.
In Proceedings of the Figth ACM Symposium on Principles of Distributed
Computing, pages 239-248, Edmonton, Alberta, August 1989.

[KP86] Y. Kornatzky and S. S. Pinter. A model checker for partial order temporal
logic. EE PUB 597, Department of Electrical Enginering, Technion-Israel
Institute of Technology, 1986.

[KP87] S. Katz and D. Peled. Interleaving set temporal logic. In Proc. 6th ACM
Symp. on Principles of Distributed Computing, pages 178-190, Vancouver,
August 1987.

[KP92a] S. Katz and D. Peled. Defining conditional independence using collapses.
Theoretical Computer Science, 101:337-359, 1992.

[KP92b] S. Katz and D. Peled. Verification of distributed programs using representa-
tive interleaving sequences. Distributed Computing, 6:107-120, 1992.

[Lam77] L. Lamport. Proving the correctness of multiprocess programs. IEEE Trans-
actions.on Software Engineering, SE-3(2):125-143, 1977.

www.manaraa.com

BIBLIOGRAPHY 131

[Lam78] L. Lamport. Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7):558-564, 1978.

[Lam83] L. Lamport. What good is temporal logic? Information Processing’83, pages
657-668, 1983.

[Liu89] M.T. Liu. Protocol engineering. Advances in Computing, 29:79-195, 1989.

[LP81] H. R. Lewis and C. H. Papadimitriou. Elements of the Theory of Computation.
Prentice Hall, 1981.

[LP85] O. Lichtenstein and A. Pnueli. Checking that finite state concurrent programs
satisfy their linear specification. In Proceedings of the Twelfth ACM Sympo-
stum on Principles of Programming Languages, pages 97-107, New Orleans,
January 1985.

[Maz86] A. Mazurkiewicz. Trace theory. In Petri Nets: Applications and Relationships
to Other Models of Concurrency, Advances in Petri Nets 1986, Part II; Pro-
ceedings of an Advanced Course, volume 255 of Lecture Notes in Computer
Science, pages 279-324. Springer-Verlag, 1986.

McM92] K. McMillan. Using unfolding to avoid the state explosion problem in the
verification of asynchronous circuits. In Proc. jth Workshop on Computer

Aided Verification, volume 663 of Lecture Notes in Computer Science, pages
164-177, Montreal, June 1992. Springer-Verlag.

IMP92] 7. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent
Systems: Specification. Springer-Verlag, 1992.

[Ove81] W. T. Overman. Verification of Concurrent Systems: Function and Timing.
PhD thesis, University of California Los Angeles, 1981.

[Pel93] D. Peled. All from one, one for all: on model checking using representatives. In
Proc. 5th Conference on Computer Aided Verification, volume 697 of Lecture
Notes in Computer Science, pages 409-423, Elounda, June 1993. Springer-
Verlag.

[Pel94] D. Peled. Combining partial order reductions with on-the-fly model-checking.
In Proc. 6th Conference on Computer Aided Verification, volume 818 of
Lecture Notes in Computer Science, pages 377-390, Stanford, June 1994.
Springer-Verlag.

[Pen88| W. Penczek. A temporal logic for event structures. Fundamenta Informaticae,
11(3):297 326, 198.

www.manaraa.com

132 BIBLIOGRAPHY

[Pen90)] W. Penczek. Proving partial order properties using cctl. Proc. Concurrency

and Compositionality Workshop, San Miniato, Italy, 1990.

[Pet81] J. L. Peterson. Petri Net Theory and the Modeling of Systems. Prentice Hall,
1981.

[PL90] D. K. Probst and H. F. Li. Using partial-order semantics to avoid the state
explosion problem in asynchronous systems. In Proc. 2nd Workshop on Com-
puter Aided Verification, volume 531 of Lecture Notes in Computer Science,

pages 146-155, Rutgers, June 1990. Springer-Verlag.

[Pnu85] A. Pnueli. Applications of temporal logic to the specification and verification
of reactive systems: A survey of current trends. In Proc. Advanced School on
Current Trends in Concurrency, volume 224 of Lecture Notes in Computer
Science, pages 510-584, Berlin, 1985. Springer-Verlag.

[Prag86] V. Pratt. Modelling concurrency with partial orders. International Journal
of Parallel Programming, 15(1):33-71, 1986.

[PW84] S. S. Pinter and P. Wolper. A temporal logic for reasoning about partially
ordered computations. In Proc. 3rd ACM Symposium on Principles of Dis-
tributed Computing, pages 28-37, Vancouver, 1984.

[QS81] J.P. Quielle and J. Sifakis. Specification and verification of concurrent systems
in cesar. In Proc. 5th Int’l Symp. on Programming, volume 137 of Lecture

Notes in Computer Science, pages 337-351. Springer-Verlag, 1981.

[Rei85] W. Reisig. Petri Nets: an Introduction. EATCS Monographs on Theoretical
Computer Science, Springer-Verlag, 1985.

[Rud87] H. Rudin. Network protocols and tools to help produce them. Annual Review
of Computer Science, 2:291-316, 1987.

[Rud92] H. Rudin. Protocol development success stories: Part I. In Proc. 12th IFIP
WG 6.1 International Symposium on Protocol Specification, Testing, and Ver-
ification, Lake Buena Vista, Florida, June 1992. North-Holland.

[SAR89] F. A. Stomp and W. P. de Roever. Designing distributed algorithms by means
of formal sequentially phased reasoning. In Proc. 3rd International Workshop

on Distributed Algorithms, volume 392 of Lecture Notes in Computer Science,
pages 242-253, Nice, 1989. Springer-Verlag.

[Sif82] J. Sifakis. A unified approach for studying the properties of transition system.
Theoretical Computer Science, 18:227-258, 1982.

www.manaraa.com

BIBLIOGRAPHY 133

[Tar72] R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM J. Com-
puting, 1(2):146-160, 1972.

[Tha89] André Thayse and et al. From Modal Logic to Deductive Databases: Intro-
ducing a Logic Based Approach to Artificial Intelligence. Wiley, 1989.

[TN87] M. Trehel and M. Naimi. Un algorithme distribué d’exclusion mutuelle en
log(n). Technique et Science Informatiques, pages 141-150, 1987.

[Tur93] K. J. Turner et al. Using Formal Description Techniques — An Introduction
to Estelle, Lotos and SDL. Wiley, 1993.

[Val88a] ~ A. Valmari. Error detection by reduced reachability graph generation. In
Proc. 9th International Conference on Application and Theory of Petri Nets,
pages 95-112, Venice, 1988.

[Val88b] A. Valmari. Heuristics for lazy state generation speeds up analysis of con-
current systems. In Proc. of the Finnish Artificial Intelligence Symposium
STeP-88, volume 2, pages 640-650, Helsinki, 1988.

[Val90] A. Valmari. A stubborn attack on state explosion. In Proc. 2nd Workshop
on Computer Aided Verification, volume 531 of Lecture Notes in Computer
Science, pages 156-165, Rutgers, June 1990. Springer-Verlag.

[Val91] A. Valmari. Stubborn sets for reduced state space generation. In Advances
wn Petri Nets 1990, volume 483 of Lecture Notes in Computer Science, pages
491-515. Springer-Verlag, 1991.

[Val93] A. Valmari. On-the-fly verification with stubborn sets. In Proc. 5th Confer-
ence on Computer Aided Verification, volume 697 of Lecture Notes in Com-

puter Science, pages 397-408, Elounda, June 1993. Springer-Verlag.

[VW86] M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic
program verification. In Proceedings of the First Symposium on Logic in
Computer Science, pages 322-331, Cambridge, June 1986.

[Wes86] C. H. West. Protocol validation by random state exploration. In Proc. 6th
IFIP WG 6.1 International Symposium on Protocol Specification, Testing,
and Verification, pages 233—242. North-Holland, 1986.

[(WG93]___P. Wolper and P. Godefroid. Partial-order methods for temporal verifica-
tion (invited paper). In Proc. CONCUR’93, volume 715 of Lecture Notes in
Computer Science, pages 233-246, Hildesheim, August 1993. Springer-Verlag.

www.manaraa.com

134 BIBLIOGRAPHY

[Win86] G. Winskel. Event structures. In Petri Nets: Applications and Relationships
to Other Models of Concurrency, Advances in Petri Nets 1986, Part II; Pro-
ceedings of an Advanced Course, volume 255 of Lecture Notes in Computer
Science, pages 325-392. Springer-Verlag, 1986.

[WL89| P. Wolper and V. Lovinfosse. Verifying properties of large sets of processes
with network invariants. In Automatic Verification Methods for Finite State
Systems, Proc. Int. Workshop, Grenoble, volume 407 of Lecture Notes in
Computer Science, pages 68-80, Grenoble, June 1989. Springer-Verlag.

[Wol89] P. Wolper. On the relation of programs and computations to models of tem-
poral logic. In B. Baniegbal, H. Barringer, and A. Pnueli, editors, Proc.
Temporal Logic in Specification, volume 398 of Lecture Notes in Computer

Science, pages 75—123. Springer-Verlag, 1989.

[WVS83] P. Wolper, M.Y. Vardi, and A.P. Sistla. Reasoning about infinite computation
paths. In Proc. 24th IEEE Symposium on Foundations of Computer Science,
pages 185-194, Tucson, 1983.

[YSSC93] T. Yoneda, A. Shibayama, B.-H. Schlingloff, and E. Clarke. Efficient verifi-
cation of parallel real-time systems. In Proc. 5th Conference on Computer
Aided Verification, volume 697 of Lecture Notes in Computer Science, pages
321-332, Elounda, June 1993. Springer-Verlag.

www.manharaa.com

