
www.manaraa.com

UNIVERSITE DE LIEGEFacult�e des Sciences Appliqu�ees

Partial-Order Methodsfor the Veri�cation of Concurrent SystemsAn Approach to the State-Explosion Problem

Th�ese pr�esent�ee parPatrice Godefroiden vue de l'obtention du gradede Docteur en Sciences Appliqu�eesAnn�ee Acad�emique 1994{1995

www.manaraa.com

www.manaraa.com

Abstract
State-space exploration techniques are increasingly being used for debugging and prov-ing correct �nite-state concurrent reactive systems. The reason for this success is mainlythe simplicity of these techniques. Indeed, they are easy to understand, easy to im-plement and, last but not least, easy to use: they are fully automatic. Moreover, therange of properties that they can verify has been substantially broadened thanks to thedevelopment of model-checking methods for various temporal logics.The main limit of state-space exploration veri�cation techniques is the often exces-sive size of the state space due, among other causes, to the modeling of concurrencyby interleaving. However, exploring all interleavings of concurrent events is not a priorinecessary for veri�cation: interleavings corresponding to the same concurrent executioncontain related information. One can thus hope to be able to verify properties of a concur-rent system without exploring all interleavings of its concurrent executions. This thesispresents a collection of methods, called partial-order methods, that make this possible.The intuition behind partial-order methods is that concurrent executions are reallypartial orders and that concurrent events should be left unordered since the order of theiroccurrence is irrelevant. However, rather than choosing to work with direct representa-tions of partial orders, the methods we develop keep to an interleaving representationof partial orders, but attempt to limit the expansion of each partial-order computationto just one of its interleavings, instead of all of them. More precisely, given a prop-erty, partial-order methods explore only a reduced part of the global state-space that issu�cient for checking the given property. In the thesis, three types of properties are con-sidered: absence of deadlocks, safety properties, and properties expressed by linear-timetemporal-logic formulas.The techniques and algorithms we describe have been implemented in an add-on pack-age for the protocol veri�cation system SPIN. This Partial-Order Package has been testedon numerous examples, including several industrial-size communication protocols. Whenthe coupling between the processes is very tight, partial-order methods yield no reduc-tion, and the partial-order search becomes equivalent to a classical exhaustive search.When the coupling between the processes is very loose, the reduction is very impressive:in some cases, the number of states that need to be visited for veri�cation can be reducedfrom exponential to polynomial in the size of the system description (code). For mostrealistic examples, partial-order methods provide a signi�cant reduction of the memoryand time requirements needed to verify protocols.

www.manaraa.com

www.manaraa.com

Acknowledgments
This work would not have been possible without the technical and moral support ofmy thesis advisor, Pierre Wolper. He introduced me to the �eld of veri�cation, andopened doors for me in the research community. His enthusiastic supervision has been acontinuous source of encouragements to me. I consider myself fortunate that I had accessto his valuable guidance.I am grateful to the other members of my reading committee, Professors RaymondDevillers, Pascal Gribomont, Amir Pnueli, Daniel Ribbens, Joseph Sifakis, and AnttiValmari, for their careful review of this work.It has been a great pleasure for me to work closely with Didier Pirottin during theselast three years. I am thankful to Didier for numerous insightful discussions, and for hishelp in implementing algorithms presented in this thesis.I wish to thank Gerard Holzmann for freely sharing his considerable experience invalidating communication protocols. I learned how to build veri�cation tools mainlyfrom his work and from discussions with him. He provided me with many challengingexamples of communication protocols, which have been (and still are) a very good sourceof inspiration to me. He also made possible an exciting visit to AT&T Bell Laboratoriesduring the summer of 1992.I have had the opportunity to discuss my research with many scientists at variousconferences and seminars. I thank all of them for being helpful and encouraging. I amparticularly grateful to Mark Drummond, Pascal Gribomont, Froduald Kabanza, DoronPeled, and Antti Valmari for very fruitful discussions. Special thanks also go to BernardBoigelot, Philippe Lejoly, and Luc Moreau for reading and commenting on an earlyversion of this thesis.This work was �nancially supported by the European Community ESPRIT projectsSPEC (3096) and REACT (6021), and by the Belgian Incentive Program \InformationTechnology { Computer Science of the Future", initiated by the Belgian State { PrimeMinister's Service { Science Policy O�ce, which I gratefully acknowledge.Last but not least, I would like to take this opportunity to thank my parents for theirconstant moral support, and Anne-Christine for her love, for sharing ups and downs, andfor reminding me, when necessary, that computer science is not the most important thingin life.

www.manaraa.com

www.manaraa.com

Contents
1 Introduction 111.1 Background and Motivation : 111.2 Partial-Order Methods : 131.3 Related Work : 141.4 Organization of the Thesis : 162 Concurrent Systems and Semantics 192.1 Representing Concurrent Systems : 192.2 Semantics : 222.3 Example : 232.4 Discussion : 243 Using Partial Orders to Tackle State Explosion 273.1 Independent Transitions : 273.2 Traces : 293.3 Selective Search : 313.4 Detecting Independency in Concurrent Systems : : : : : : : : : : : : : : 333.4.1 Towards More Independency : 333.4.2 Re�ning Dependencies between Operations : : : : : : : : : : : : : 353.4.3 Summary : 394 Persistent Sets 414.1 De�nition : 415

www.manaraa.com

6 CONTENTS4.2 Computing Persistent Sets : 434.3 Algorithm 1 (Con
icting Transitions) : 444.4 Algorithm 2 (Overman's Algorithm) : 474.5 Algorithm 3 (Stubborn Sets) : 514.5.1 Basic Idea : 514.5.2 Algorithm : 534.6 Comparison : 564.7 Algorithm 4 (Conditional Stubborn Sets) : : : : : : : : : : : : : : : : : : 604.7.1 Basic Idea : 604.7.2 Algorithm : 624.8 Discussion : 675 Sleep Sets 715.1 Basic Idea : 715.2 Algorithm : 735.3 Properties of Sleep Sets : 765.3.1 On Combining Sleep Sets with Persistent Sets : : : : : : : : : : : 765.3.2 Reducing State Matchings : 786 Veri�cation of Safety Properties 816.1 Beyond Deadlock Detection : 816.2 Algorithm : 836.3 Trace Automata : 866.4 Properties of Trace Automata : 926.5 Comparison with Other Work : 947 Model Checking 997.1 Beyond Safety Properties : 997.2 Automata and Model Checking : 1007.3 Using Partial Orders for Model Checking : : : : : : : : : : : : : : : : : : 1027.4 Model Checking with Fairness Assumptions : : : : : : : : : : : : : : : : 105

www.manaraa.com

CONTENTS 78 Experiments 1098.1 How Can Partial-Order Methods Be Evaluated? : : : : : : : : : : : : : : 1098.2 A Partial-Order Package for SPIN : 1118.3 Evaluation : 1128.4 State-Space Caching : 1168.5 Conclusion : 1209 Conclusions 1239.1 Summary : 1239.2 Future Work : 125Bibliography 125

www.manaraa.com

8 CONTENTS

www.manaraa.com

List of Figures
2.1 Classical search : 232.2 Global state space for the two-dining-philosophers system : : : : : : : : : 253.1 Partial order of transition occurrences : 304.1 Persistent-set selective search : 424.2 Algorithm 1 : 444.3 Algorithm 2 : 484.4 Algorithm 3 : 544.5 Algorithm 4 : 645.1 Global state space for the system of Example 5.1 : : : : : : : : : : : : : 725.2 Selective search using persistent sets and sleep sets : : : : : : : : : : : : 735.3 Reduced state space with sleep sets : 786.1 Reduced state space for the system of Example 6.1 : : : : : : : : : : : : 826.2 Selective search using persistent sets, sleep sets, and proviso : : : : : : : 846.3 Reduced state space with proviso for the system of Example 6.1 : : : : : 868.1 Reduction due to partial-order methods for dining philosophers : : : : : 1108.2 Reduced state space for the producer-consumer problem : : : : : : : : : 1118.3 Performances of state-space caching for MULOG3 : : : : : : : : : : : : : 1188.4 Typical protocol example : 121

9

www.manaraa.com

10 LIST OF FIGURES

www.manaraa.com

Chapter 1Introduction
1.1 Background and MotivationConcurrent systems are systems composed of elements that can operate concurrentlyand communicate with each other. Each component can be viewed as a reactive system,i.e., a system that continuously interacts with its environment. The environment of onecomponent is formed by the other components of the concurrent system, which is henceassumed to be closed. (This implies that, in case of a single \open" reactive system, amodel of the environment in which this system operates has to be represented by othercomponent(s) of the concurrent system, in order to close the system.) The behaviorof a reactive system is de�ned by its ongoing behavior over time. This is quite unlikethe traditional \transformational" view of programs where the functional relationshipbetween the input state and the output state de�nes the meaning of a program. In-deed, reactive systems are not dedicated to the transformation of data (like traditionalprograms), but rather to the control of processes. There are many examples of such con-current reactive systems: computer networks, asynchronous circuits, operating systems,and various forms of plant-controller systems, such as telephone switches,
ight-controlsystems, manufacturing-plant controllers, etc.Concurrent reactive systems are notably di�cult to design. Indeed, such systemscan usually exhibit an extremely large number of di�erent behaviors. This is due tothe combinatorial explosion resulting from all possible interactions between the di�erentconcurrent components of the system, and the many possible race conditions that mayarise between them. This situation makes the development of concurrent reactive systemsan extremely delicate task. Testing is also of very limited help since test coverage is boundto be only a minute fraction of the possible behaviors of the system. This situationis all the more alarming since reactive systems are increasingly being used to control11

www.manaraa.com

12 CHAPTER 1. INTRODUCTIONsafety-critical devices (e.g.,
ight-control systems) or economically-crucial systems (e.g.,telephone switches).Veri�cation provides the mean to ensure the correctness of the design of concurrentreactive systems. Veri�cation means checking that a system description conforms to itsexpected properties. These properties can range from several forms of consistency tocomplex correctness requirements speci�ed, for instance, in a logical language. Veri�ca-tion is thus the tool that enables the designer to be con�dent that the formal descriptionof the system he/she has obtained does indeed satisfy the problem requirements.Four elements are necessary to de�ne a veri�cation framework:� a representation of the system,� a representation of the property to be checked,� a conformation criterion according to which the representations of the system andof the property are compared, and� a method (preferably an automatic algorithm) for performing this comparison.Note that \verify" means to (mathematically) prove that a system meets its correctnessrequirements. We speci�cally do not mean testing (unless it is exhaustive) or any othermethod that ensures that the system is \probably" correct. In order to prove that asystem conforms to a property, all possible behaviors of the system have to be checkedto determine if all of them are compatible with the given property.State-space exploration is one of the most successful strategies for analyzing and veri-fying �nite-state concurrent reactive systems. It consists in exploring a global state graphrepresenting the combined behavior of all concurrent components in the system. Thisis done by recursively exploring all successor states of all states encountered during theexploration, starting from a given initial state, by executing all enabled transitions ineach state. The state graph that is explored is called the state space of the system. Ifthe state space is �nite, it can be explored completely.Many di�erent types of properties of a system can be checked by exploring its statespace: deadlocks, dead code, violations of user-speci�ed assertions, etc. Moreover, therange of properties that state-space exploration techniques can verify has been substan-tially broadened during the last decade thanks to the development of model-checkingmethods for various temporal logics (e.g., [CES86, LP85, QS81, VW86]).Veri�cation by state-space exploration has been studied by many researchers (cf. [Liu89,Rud87]). The simplicity of the strategy lends itself to easy, and thus e�cient, implemen-tations. Moreover, veri�cation by state-space exploration is fully automatic: no inter-vention of the designer is required. This is a crucial feature for a veri�cation technique

www.manaraa.com

1.2. PARTIAL-ORDER METHODS 13to be used in industry. Indeed, systems are often (read always) developed under timepressure, and veri�cation steps that would be too much time consuming for the designerare therefore not realistic.All these reasons explain why many present veri�cation tools follow this paradigm.Examples of such tools are CAESAR [FGM+92], COSPAN [HK90], MURPHI [DDHY92],SPIN [Hol91], among others. These tools di�er by the formal description languages theyuse for representing systems and properties, and by the conformation criterion accordingto which these representations are compared. But all of them are based on state-spaceexploration algorithms, in one form or another, for performing the veri�cation itself.As tools are being developed, the e�ectiveness of state-space exploration techniquesfor debugging and proving correct concurrent reactive systems is increasingly becom-ing established. The number of \success stories" about applying these techniques toindustrial-size systems keeps growing (e.g., see [Rud92]). Several very complex exam-ples of concurrent systems have been analyzed and veri�ed using state-space explorationtechniques. In many cases, these techniques were able to reveal quite subtle design errors.The main limit of state-space exploration veri�cation techniques is the often excessivesize of the state space. Owing to simple combinatorics, this size can be exponential in thesize of the description of the system being analyzed. This exponential growth is knownas the state-explosion problem.The state-explosion problem is due, among other causes, to the modeling of concur-rency by interleaving, or, more accurately, to the exploration of all possible interleavingsof concurrent events. For instance, the execution of n concurrent events is investigatedby exploring all n! interleavings of these events.In this thesis, we develop an original approach for applying veri�cation by state-spaceexploration without incurring most of the cost of modeling concurrency by interleaving.1.2 Partial-Order MethodsWe show that exploring all interleavings of concurrent events is not a priori necessary forveri�cation: interleavings corresponding to the same concurrent execution contain relatedinformation. One can thus hope to be able to verify properties of a concurrent systemwithout exploring all interleavings of its concurrent executions. This thesis presents acollection of methods, called partial-order methods, that make this possible.The intuition behind partial-order methods is that concurrent executions are reallypartial orders and that expanding such a partial order into the set of all its interleav-ings is an ine�cient way of analyzing concurrent executions. Instead, concurrent events

www.manaraa.com

14 CHAPTER 1. INTRODUCTIONshould be left unordered since the order of their occurrence is irrelevant. Hence the name\partial-order methods". However, rather than choosing to work with direct representa-tions of partial orders, the methods we develop keep to an interleaving representation ofpartial orders, but attempt to limit the expansion of each partial-order computation tojust one of its interleavings, instead of all of them.Precisely, given a property, partial-order methods explore only a reduced part of theglobal state space that is provably su�cient to check the given property. The di�erencebetween the reduced and the global state spaces is that all interleavings of concurrentevents are not systematically represented in the reduced one. We will see later that whichinterleavings are required to be preserved may depend on the property to be checked.The speci�cation of the algorithms we develop is that they have to verify a given prop-erty of a �nite-state concurrent system while exploring as small a fraction as possible ofits state space. In this thesis, we present algorithms for exploring reduced state spaces forthe veri�cation of three types of properties: absence of deadlocks, safety properties, andlinear-time temporal-logic formulas. These types of properties are considered separatelybecause checking more elaborate properties requires the preservation of more informa-tion in the reduced state space, i.e, the exploration of more states and transitions. Itis therefore worth developing speci�c algorithms for the veri�cation of standard typesof properties, and then using the appropriate algorithm for each property in order tomaximize the amount of reduction that can be obtained in practice.It must be noted that, though the partial-order methods we develop are inspired bypartial-order semantics (especially by Mazurkiewicz's traces [Maz86]), these methods donot comply with any speci�c partial-order semantics. Indeed, the only requirement is thatthe modi�ed concurrent composition computes enough interleavings to make checkingthe desired property possible. Not all concurrent executions need be represented if theveri�cation does not require it and, conversely, a given concurrent execution can berepresented by several redundant interleavings. The prime concern is to check the desiredproperty as e�ciently as possible.1.3 Related WorkIt has been recognized for some time that concurrency and nondeterminism are notthe same thing. This observation has inspired a fairly large body of work on so-called\partial-order models" of concurrency (cf. [Lam78, Maz86, Pra86, Win86]). Work inthis area studies various semantics for concurrency, and compares their properties. Inthis thesis, we take a more pragmatic point of view towards partial-order models: ourgoal is to develop veri�cation methods for concurrent �nite-state systems that avoid the

www.manaraa.com

1.3. RELATED WORK 15part of the combinatorial explosion due to the modeling of concurrency by interleaving.Our approach yields results identical to those of methods based on classical interleav-ing semantics, it just avoids most of the associated combinatorial explosion. It is alsoquite orthogonal to the veri�cation of properties expressed in partial-order temporal log-ics (cf. [PW84, KP86, KP87, Pen88, Pen90]). Indeed, these logics are designed to besemantically more expressive. We are \only" more e�cient.Several approximate methods based on simple heuristics have been proposed to restrictthe number of interleavings that are explored [GH85, Wes86, Hol87]. These heuristicscarry with them the risk of incomplete veri�cation results, i.e., they can detect errors butcannot prove the absence of errors. In contrast, the partial-order methods we developin this thesis reduce the number of interleavings that must be inspected in a completelyreliable manner, provably without the risk of any incompleteness in the veri�cation re-sults.The closest work to the one presented here is certainly that of Valmari [Val91], whichextends previous work done by Overman [Ove81]. Indeed, Valmari has developed an ap-proach (based on \stubborn sets") for generating reduced state spaces that can be usedfor checking properties of concurrent systems. Despite this general similarity with ourapproach, there are many di�erences that distinguish Valmari's work from ours. Theseimportant technical di�erences will be pointed out during the presentation of this thesis.Note, as a �rst notable di�erence, that Valmari does not rely on any partial-order seman-tics to justify and prove the correctness of his algorithms. This makes the presentationof the stubborn set method (see [Val91]) less modular and, we believe, less intuitive thanthe style of presentation using partial-order semantics (precisely Mazurkiewicz's traces)adopted in this thesis. This is of course a subjective point of view. However, this issuehas implications that go beyond a simple question of presentation. Indeed, using partialorders and a notion of (in)dependency as done in this thesis, we were able, among otherthings, to generalize and improve the stubborn set method, as will be presented in Chap-ter 4. This is a more solid argument in favor of our approach to the problem. In anycase, our partial-order approach indubitably brings a new perspective on the stubbornset theory.Strategies for proving properties of concurrent systems without considering all possibleinterleavings of their concurrent actions have been proposed in [AFdR80, EF82, Pnu85,SdR89, KP92b, JZ93]. These proof methods are applied in the context of an inferencesystem, in which the correctness of a system is established by proving assertions aboutits components. This approach to veri�cation has the advantage of not being restrictedto �nite-state systems. On the other hand, it requires proofs that are manual. Evenwith the help of a theorem prover, carrying out proofs with a theorem prover is far fromfully automatic since most steps of the proof require inventive interventions from the

www.manaraa.com

16 CHAPTER 1. INTRODUCTIONuser. In contrast, the focus of this thesis is purely on algorithmic issues, since we discussfully-automatic state-space exploration techniques.The idea that the cost of modeling concurrency by interleaving can be avoided in �nite-state veri�cation also appeared in [JK90, PL90, McM92, Esp92]. In [JK90], the problemof �nding an \optimal" reduced state space with just enough transitions and states topreserve Mazurkiewicz's trace semantics is addressed. In [PL90], a method that relieson a pomset grammar description of the system is introduced. Also, in [McM92, Esp92],one �nds a veri�cation method that works by unfolding a Petri net description of aconcurrent system into a �nite acyclic structure. These methods are quite di�erent fromthose developed in this thesis. Note that none of these other methods have been widelyexperimented on a large set of realistic examples, as it has been the case for the methodspresented here (see Chapter 8).The key contributions of the material presented in this thesis already appeared ina series of papers [God90, GW91a, GW91b, GHP92, HGP92, GP93, GW93, WG93,GW94]. The thesis presents most of the results published in these papers in a uni�edframework, and relates them with each other. The thesis also extends several of theseresults. References to preliminary published versions are included in the presentation ofthe following Chapters.1.4 Organization of the ThesisIn Chapter 2, we introduce a simple model for representing concurrent systems, andde�ne its semantics. Then, we motivate the choice of this model, and compare it to otherexisting models and formalisms.In Chapter 3, we show that exploring all possible interleavings of all possible \inde-pendent" transitions of a system is not necessary for veri�cation. We precisely de�ne thenotion of independency, and discuss how to detect independency between transitions inconcurrent systems. Interleavings of independent transitions are related by the notionof Mazurkiewicz's trace. The algorithms developed in this thesis take advantage of theindependency between transitions to avoid exploring all their interleavings, and thus toavoid exploring parts of the state space. Such a partial exploration of the state space iscalled a selective search.In Chapter 4, a �rst technique for determining the transitions that need to be exploredin a selective search, called the persistent set technique, is presented. This technique actu-ally corresponds to a whole family of existing algorithms, which are presented, discussed,and compared with each other. Then, a new algorithm that generalizes and improves theprevious ones in a sense that will be given later is described.

www.manaraa.com

1.4. ORGANIZATION OF THE THESIS 17In Chapter 5, another technique for selecting transitions to be explored in a selectivesearch, called the sleep set technique, is introduced. Sleep sets are shown to be compatiblewith persistent sets, and their properties are studied.In Chapter 6, the persistent set and sleep set techniques, used for deadlock detectionin Chapters 4 and 5, are extended in order to make possible the veri�cation of arbi-trary safety properties. Trace automata are introduced to justify the correctness of thisextension.In Chapter 7, we address the model-checking problem for linear-time temporal-logic.We point out the key problems underlying the veri�cation of liveness properties usingpartial-order methods, and compare the solutions that have been proposed for solvingthese problems. We also show how the proposed techniques complement each other.In Chapter 8, results of experiments on various examples using the algorithms thathave been developed in this thesis are presented. These algorithms have been imple-mented in an add-on package for the protocol veri�cation system SPIN. This partial-orderpackage is brie
y described, and instructions for obtaining a copy of it by anonymous ftpare given. The complementarity between partial-order methods and state-space cachingis also pointed out. The practical contribution of partial-order methods is �nally dis-cussed.In Chapter 9, a summary of our contributions is presented together with some areasfor further study.

www.manaraa.com

18 CHAPTER 1. INTRODUCTION

www.manaraa.com

Chapter 2Concurrent Systems and Semantics
In this Chapter, we introduce a simple representation for modeling concurrent systems,and de�ne its semantics. Then, we motivate the choice of this model, and compare it toother existing models and formalisms.2.1 Representing Concurrent SystemsConcurrent systems are composed of di�erent components, called processes, that can actin parallel and interact with each other. In this thesis, we will assume that processesare �nite-state, i.e., that the number of states that they can reach is �nite. We will alsoassume that processes can synchronize by executing together joint transitions (rendez-vous), and communicate by performing operations on shared objects. Formally, ourmodel for representing concurrent systems is the following.A labeled formal concurrent system (LFCS), or system for short, is a tuple (P;O; T ; �; s0),where� P is a �nite set of n processes,� O is a �nite set of m objects,� T is a �nite set of transitions,� � : T 7! � is a labeling function that associates a label, also called an action, takenfrom an alphabet � with each transition of T , and� s0 is the initial state of the system. 19

www.manaraa.com

20 CHAPTER 2. CONCURRENT SYSTEMS AND SEMANTICSEach process Pi 2 P is a �nite nonempty set of local states, or control points. Processesare pairwise disjoint.Processes can access a �nite set of objects. An object O is characterized by a pair(V;OP), where V is the set of all possible values for the object (its domain), and OPis the set of operations that can be performed on the object. Each operation opi 2 OPis a (possibly partial) function INi � V ! OUTi � V , where INi and OUTi repre-sent respectively the set of possible inputs and outputs of the operation. The notationopi(in; v)! (out; v0) denotes the fact that the execution of the operation opi 2 OP withinput value in 2 INi while the value of the object is v yields an output value out 2 OUTiand changes the value of the object to v0. For operations opi that do not take an input(resp. do not return an output), the set INi (resp. OUTi) degenerates to a singleton,and we denote its unique meaningless value by \{".Example 2.1 Consider an object \boolean variable" whose domain V is the set f0; 1g.We de�ne two operations on this object.� A Read operation for which the set IN is f{g, and the set OUT is f0; 1g. A Readoperation is always de�ned, and its e�ect is de�ned by Read({; v)! (v; v), for allv 2 f0; 1g.� AWrite operation for which the set IN is f0; 1g, and the set OUT is f{g. AWriteoperation is always de�ned, and its e�ect is de�ned by Write(v0; v) ! ({; v0), forall v; v0 2 f0; 1g.
A global state s, or simply a state, of a system is an element of the set S = P1 �: : :�Pn�V1� : : :�Vm. A state s = (s(1); s(2); : : : ; s(n); v(1); v(2); : : : ; v(m)) assigns toeach process Pi a local state s(i) 2 Pi of this process (this can be viewed as the formalcounterpart of the notion of \program counter" for a physical process), and associatesa value v(j) 2 Vj with each object Oj. The initial state s0 is an element of S. In whatfollows, we write l 2 s to mean 9i; 1 � i � n such that l = s(i), i.e., for notationalconvenience we allow ourselves to view the state s as a set rather than as a vector.A transition t 2 T is a tuple (L;G;C; L0). Both L and L0 are partial control states,i.e., nonempty subsets of [ni=1Pi such that for each 1 � i � n, jL \ Pij = jL0 \ Pij � 1.The sets L and L0 are respectively called the preset and postset of the transition t. In thesequel, pre(t) denotes the preset of the transition t, while post(t) denotes the postset ofthe transition t. The processes Pi's that participate in a transition t, i.e., the processesPi's such that jL \ Pij = jL0 \ Pij = 1, are said to be active for this transition. The set

www.manaraa.com

2.1. REPRESENTING CONCURRENT SYSTEMS 21of processes that are active for a transition t is denoted by active(t). The guard G ofthe transition is a conjunction of conditions cj. Conditions cj in G can test the currentvalue of objects by using operations on these objects that do not modify their value. Thecommand C of the transition is a function from V1� : : :�Vm to V1� : : :�Vm de�ned bya sequential composition of operations on objects, with the restriction that an operationthat modi�es the value of an object Oj cannot be followed by any other operation on Ojin the remainder of the sequence of operations de�ning the command.For instance, if x and y are two objects of type \boolean variable" as de�ned inExample 2.1, \x := y" denotes a command that performs a Read operation on object y,and then performs a Write operation on object x with the output value returned by theRead operation. If x is v(k) and y is v(l), the function de�ned by the command x := y isthe function f from V1 � : : :� Vm to V1 � : : :� Vm such that f((v(1); v(2); : : : ; v(m))) =(v0(1); v0(2); : : : ; v0(m)) where v0(i) = v(i), i 6= k, and v0(k) = v(l).We assume that, for each operation op that appears in the command C of a transition,if op is not de�ned for all inputs and all values of the object, there is a condition cj(expressed by using operations on the object and predicates on its domain and the domainof its inputs and outputs) in the guard G of the transition such that op is de�ned i� cj istrue. Operations that appear either in the guard G or in the command C of a transitionare said to be used by this transition. The set of operations that are used by a transitiont is denoted by used(t). An object is said to be accessed by a transition if the transitionuses an operation on the object.A transition t = (L;G;C; L0) is enabled in a state s i� L � s and G is true in s. If tis not enabled in s, t is said to be disabled in state s. A transition t that is enabled in astate s = (s(1); s(2); : : : ; s(n); v(1); v(2); : : : ; v(m)) can be executed. After the executionof t, the system reaches a state s0 = (s0(1); s0(2); : : : ; s0(n); v0(1); v0(2); : : : ; v0(m)) suchthat:� fs0(1); s0(2); : : : ; s0(n)g = f(s(1); s(2); : : : ; s(n)g n L) [L0; and� the command C maps (v(1); v(2); : : : ; v(m)) to (v0(1); v0(2); : : : ; v0(m)).State s0 is called the successor of s by t. We write s t! s0 to mean that the transitiont leads from the state s to the state s0, while s w) s0 means that the �nite sequence oftransitions w leads from s to s0. If s w) s0, s0 is said to be reachable from s.Note 2.2 Transitions, as well as operations on objects, are deterministic: the executionof a transition t in a state s leads to a unique successor state. This is not a restrictionsince \nondeterministic transitions" can always be modeled by a set of deterministictransitions with non mutually exclusive guards.

www.manaraa.com

22 CHAPTER 2. CONCURRENT SYSTEMS AND SEMANTICS2.2 SemanticsA concurrent system as de�ned here is a closed system: from its initial state, it can evolveand change its state by executing enabled transitions. Therefore, a very natural way todescribe the possible behaviors of such a system is to consider its set of reachable globalstates and the transitions that are possible between these.More speci�cally, the joint global behavior of all processes Pi in a LFCS can be repre-sented by an automaton AG = (�; S;�; s0) where� � is the alphabet of actions of the LFCS,� S is the set of states of the LFCS,� � � S � �� S is the transition relation de�ned as follows:(s; a; s0) 2 � i� 9t 2 T : s t! s0 ^ a = �(t);� s0 is the initial state of the LFCS.A transition of � corresponds to the execution of a single transition t 2 T of the system,and is labeled by �(t). To avoid any confusion with the transitions of T , transitions of� will be referred to as global transitions, while transitions of T will be referred to astransitions.It is natural to restrict AG to its states and transitions that are reachable from s0,since the other states and transitions play no role in the behavior of the system. In whatfollows, a \state in AG" denotes a state that is reachable from the initial state s0. AG iscalled the global state graph or global state space of the system.Unless otherwise speci�ed, we will assume that the domain of all objects is �nite. Thisimplies that the size of AG is �nite.In practice, AG can be computed by performing a search of all the states that arereachable from the initial state s0. An algorithm for performing such a search is shownin Figure 2.1. This algorithm recursively explores all successor states of all states en-countered during the search, starting from the initial state, by executing all enabledtransitions in each state (line 7{8). The main data structures used are a Stack to storethe states whose successors still have to be explored, and a hash table H to store all thestates that have already been visited during the search. The set of all transitions thatare enabled in a state s is denoted by enabled(s). The state reached from a state s afterthe execution of a transition t is denoted \succ(s) after t". It is easy to prove that all thestates of AG, i.e., all the states that are reachable from s0, are visited during the searchperformed by the algorithm of Figure 2.1 [AHU74].

www.manaraa.com

2.3. EXAMPLE 23
1 Initialize:Stack is empty; H is empty;2 push (s0) onto Stack;3 Loop: while Stack 6= ; do f4 pop (s) from Stack;5 if s is NOT already in H then f6 enter s in H;7 T = enabled(s);8 for all t in T do f9 s0 = succ(s) after t; /* execution of t */10 push (s0) onto Stack;11 g12 g13 g

Figure 2.1: Classical searchFor the time being, let us de�ne the set of possible behaviors of a system as the setof all possible �nite sequences of labels (actions) that the system can execute from itsinitial state. (In�nite sequences will be considered later in Chapter 7.) Formally, a �nitesequence (word) w = a1a2 : : : an of actions in � is accepted by AG if there is a sequenceof states � = s0 : : : sn such that s0 is the initial state of AG and, for all 1 � i � n,(si�1; ai; si) 2 �. We call such a sequence � a computation of AG on w. The set of wordsaccepted by AG is called the language accepted by AG. With our de�nition, this languageis pre�x closed.2.3 ExampleAs an example of concurrent system, consider the well-known dining-philosophers prob-lem, with two philosophers. This system can be modeled by the following LFCS.� P = fA;Bg, where A = fa0; a1; a2; a3g and B = fb0; b1; b2; b3g (the system iscomposed of two processes A and B; each process models one philosopher);� O = ff1; f2g, where f1 and f2 are two objects of type \boolean variable" as de�nedin Example 2.1 (f1 and f2 model two forks that can be accessed by philosophers Aand B);

www.manaraa.com

24 CHAPTER 2. CONCURRENT SYSTEMS AND SEMANTICS� T = ftA1 ; tA2 ; tA3 ; tA4 ; tB1 ; tB2 ; tB3 ; tB4 g, wheretA1 = (a0; f1 = 0; f1 := 1; a1), tB1 = (b0; f2 = 0; f2 := 1; b1), (take left fork)tA2 = (a1; f2 = 0; f2 := 1; a2), tB2 = (b1; f1 = 0; f1 := 1; b2), (take right fork)tA3 = (a2; true; f1 := 0; a3), tB3 = (b2; true; f2 := 0; b3), (release left fork)tA4 = (a3; true; f2 := 0; a0), tB4 = (b3; true; f1 := 0; b0). (release right fork)� � : T 7! � is the identity function from T to itself;� s0 = (a0; b0; 0; 0) 2 A � B � Vf1 � Vf2 (initially, A is in state a0, B is in state b0,and the two forks are released).Forks are modeled by boolean variables fi. When fi is equal to 0, fork fi is ready to betaken by any philosopher. When fi is equal to 1, fork fi is already taken by a philosopher,and cannot be taken by the other. Consider philosopher A. From its initial local controlstate a0, A can try to take fork f1: this is modeled by transition tA1 where process A testsin its guard if fork f1 is available (it tests if f1 is equal to 0), and then takes it if it isavailable by executing f1 := 1 (it sets the value of f1 to 1). Then, process A can try totake fork f2 in a similar way by trying to execute transition tA2 . When A has taken bothits left and right forks, i.e., when it reaches its local state a2, it can eat. Then, it releasesits left fork (transition tA3) and next its right fork (transition tA4), and goes back to itsinitial (thinking) state. Process B proceeds in a similar way.The global state space AG of the two-dining-philosophers system is shown in Figure 2.2.It contains 8 states and 10 transitions.2.4 DiscussionWhy did we choose to represent concurrent systems by labeled formal concurrent systems(LFCS) as de�ned above? LFCS is the result of our search for a unique model that issu�ciently general for serving as support for all the various notions and algorithms thatwill be presented in this thesis.Despite its simplicity, LFCS can be used to model easily many di�erent types ofsystems and communication mechanisms. Several processes can synchronize on thesame transition by being active for this transition. This enables one to model two-way rendez-vous (pairwise CCS-like synchronizations) as well as multi-way rendez-vous(multi-process CSP-like synchronizations). Processes can also communicate asynchro-nously by performing operations on shared objects, like shared variables, or semaphores.Message-passing communication is possible via objects modeling FIFO bu�ers.

www.manaraa.com

2.4. DISCUSSION 25
(a0; b0; 0; 0)

(a1; b0; 1; 0) (a0; b1; 0; 1)
(a1; b1; 1; 1)(a2; b0; 1; 1) (a0; b2; 1; 1)

(a3; b0; 0; 1) (a0; b3; 1; 0)

tB1
tA1tB1

tA1
tB2tA2

tA3 tB3
tA4 tB4

Figure 2.2: Global state space for the two-dining-philosophers systemLFCS can be viewed as an extension of the formal concurrent systems (FCS) of [Gri90],itself being inspired by a formalism used in [Sif82]. In FCS, transitions are not labeled,no particular initial state is associated with a system, and objects (called variables inFCS) are just memory locations without a general notion of operation. FCS is presentedin [Gri93] as a trade-o� between CSP [Hoa85] and UNITY [CM88], which are both relatedto Dijkstra's Guarded Command language [Dij76]. Indeed, FCS (and LFCS) is structuredinto processes as in CSP, while the notion of parallel composition of processes is avoidedas in UNITY by explicitly representing synchronizations between processes by \joint"transitions, i.e., transitions for which several processes are active. In this way, (L)FCScan represent concurrent systems independently of a particular semantics of parallelcomposition of processes. LFCS has also similarities with Petri Nets [Pet81, Rei85]. Byremoving the set O of objects in a LFCS, one obtains a contact-free one-safe Petri Netin which the number of tokens remains permanently equal to the number n of processes,and whose transitions are labeled with symbols in �.One could wonder why objects have been introduced in LFCS. Indeed, since the setof possible values for all objects is assumed to be �nite, objects could be represented by�nite-state processes. However, in practice, representing objects by processes is tedious.For example, a variable whose value can range on a �nite domain V would be represented

www.manaraa.com

26 CHAPTER 2. CONCURRENT SYSTEMS AND SEMANTICSby a process containing as many local states as there are possible di�erent values for thevariable, i.e., jV j states. Objects enable one to model data structures more compactlyand directly.Another, more fundamental, reason for using objects is that control should be clearlydistinguished from data in the modeling of concurrent reactive systems. Indeed, theproperties one wants to check on such systems are often properties that involve only thecontrol part of the processes of the system. Hence, control is of primary interest duringthe analysis of such systems, while data are relevant only if they in
uence the controlpart of the processes. Therefore, distinguishing control from data in the model itself canhelp to identify what is relevant for the veri�cation of a given property, and what is not.We will show that the methods developed in this thesis are able to take advantage ofthese information to make veri�cation more e�cient.For a similar reason, the notion of process is important in LFCS: information aboutwhich process is active for which transition is exploited by some of the algorithms thatwill be presented later to further improve the veri�cation (see Chapter 4). The reasonwhy transitions in a LFCS are labeled will also appear later, in Chapter 7.

www.manaraa.com

Chapter 3Using Partial Orders to TackleState Explosion
When the global state space AG of a system is �nite, it is theoretically possible to explorethe whole of AG in order to check properties of the system. In practice, this is often notthe case: AG is frequently much too large to be exhaustively explored. This phenomenonis called the state-explosion problem.One cause of the state-explosion problem is the modeling of concurrency by inter-leaving: all interleavings of all concurrent transitions of the system are represented inAG. In this Chapter, we show that exploring all these interleavings is not necessary forveri�cation.3.1 Independent TransitionsThe intuition behind the methods developed in this thesis is that concurrent executionsare really partial orders where concurrent \independent" transitions should be left un-ordered. When can transitions be considered as independent? The intuitive idea is thattransitions are independent when the order of their occurrence is irrelevant.This notion of independency between transitions and its complementary notion, thenotion of dependency, can be formalized by the following de�nition (adapted from [KP92a]).De�nition 3.1 Let T be the set of transitions in a LFCS and D � T � T be a binary,re
exive, and symmetric relation. The relation D is a valid dependency relation for theLFCS i� for all t1; t2 2 T , (t1; t2) 62 D (t1 and t2 are independent) implies that the twofollowing properties hold for all global states s 2 S of the LFCS:27

www.manaraa.com

28 CHAPTER 3. USING PARTIAL ORDERS TO TACKLE STATE EXPLOSION1. if t1 is enabled in s and s t1! s0, then t2 is enabled in s i� t2 is enabled in s0(independent transitions can neither disable nor enable each other); and2. if t1 and t2 are enabled in s, then there is a unique state s0 such that s t1t2) s0 ands t2t1) s0 (commutativity of enabled independent transitions).
This de�nition characterizes the properties of possible \valid" dependency relations forthe transitions of a given LFCS. One can wonder if this de�nition is of more than semanticuse. Indeed, it is not practical to check the two properties listed above for all pairs oftransitions for all states in order to determine which transitions are independent andwhich are not. Fortunately, in practice, it is possible to give easily checkable syntacticconditions that are su�cient for transitions to be independent.For instance, with LFCS, a su�cient syntactic condition for two transitions t1 and t2in T to be independent is that:1. the set of processes that are active for t1 is disjoint from the set of processes thatare active for t2, and2. the set of objects that are accessed by t1 is disjoint from the set of objects that areaccessed by t2.It is easy to see that the dependency relation induced by the above syntactic conditionis a valid one. Detecting independency in concurrent systems is further discussed inSection 3.4.Note 3.2 With the LFCS model we have chosen for representing concurrent systems,each global transition in the global state space of a system corresponds to the executionof exactly one transition appearing in the representation of the system, i.e., one elementof the set T of the LFCS. With models that include a notion of parallel composition ofprocesses, the correspondence between global transitions and transitions that appear inthe description of a system is less straightforward. Indeed, this correspondence dependson the semantics of the parallel composition, which determine how several transitionsof di�erent processes can be synchronized to form one global transition. Such globaltransitions can then be grouped into \system transitions", on which dependency relationscan be de�ned [GW93].

www.manaraa.com

3.2. TRACES 293.2 TracesFollowing the work of Mazurkiewicz [Maz86], one can use the notion of independenttransitions to de�ne an equivalence relation on sequences of transitions: two sequences oftransitions are equivalent if they can be obtained from each other by successively permutingadjacent independent transitions. Thus, given a valid dependency relation, sequences oftransitions can be grouped into equivalence classes which Mazurkiewicz calls traces.Formally, Mazurkiewicz's traces are de�ned as follows [Maz86].De�nition 3.3 A concurrent alphabet is a pair � = (T ; D) where T is a �nite set ofsymbols (here transitions), called the alphabet of �, and where D is a binary, re
exive,and symmetric relation on T called the dependency in �.The relation I� = T 2 nD stands for the independency in �.De�nition 3.4 Let � = (T ; D) be a concurrent alphabet, let T � represent the set ofall �nite sequences (words) of symbols in T , let � stand for the concatenation operation,and let " denote the empty word. We de�ne the relation �� as the least congruence inthe monoid [T �; �; "] such that (t1; t2) 2 I�) t1t2 �� t2t1:
The relation �� is referred to as the trace equivalence over �. [T �; �; "] is a monoidin which the concatenation operation � may be commutative for some pairs of di�erentelements. It is sometimes called a free partially commutative monoid over T .De�nition 3.5 Equivalence classes of �� are called traces over �.The trace containing a sequence of transitions w will be denoted [w](T ;D) or [w] for shortwhen there is no ambiguity. A trace is fully characterized by one of its sequences wand a concurrent alphabet � = (T ; D): by successively permuting adjacent independenttransitions in w, one can obtain all the other sequences in [w].In Mazurkiewicz's trace semantics, the behavior of a concurrent system is de�ned as aset of traces. Mazurkiewicz's trace semantics is often referred to as being a partial-ordersemantics because it is possible to de�ne a correspondence between traces and partialorders of occurrences of transitions [Maz86].

www.manaraa.com

30 CHAPTER 3. USING PARTIAL ORDERS TO TACKLE STATE EXPLOSION
t2 t1t3t1

Figure 3.1: Partial order of transition occurrencesDe�nition 3.6 A relation R � A � A on a set A that is re
exive, antisymmetric, andtransitive is called a partial order. A partial order R � A�A is also a total order if, forall a1; a2 2 A, either (a1; a2) 2 R or (a2; a1) 2 R [LP81].A partial order R � A�A can be represented graphically by a directed graph whosevertices are elements of A and whose edges are elements of R: (a1; a2) 2 R i� there is anedge from a1 to a2.De�nition 3.7 A linearization of a partial order R � A�A is a total order R0 � A�Asuch that R0 � R.The following theorem states that a partial order can be represented by the set of itslinearizations (e.g., [Pra86]).Theorem 3.8 The intersection of all the linearizations of a partial order is that partialorder.A correspondence between traces and partial orders of transition occurrences can bede�ned in such a way that the set of transition sequences in the trace is the set of alllinearizations of the partial order of transition occurrences.Example 3.9 Consider the set T = ft1; t2; t3g of transitions, and assume that t1 isdependent with respect to t2 and t3, while t2 and t3 are independent: we have D =f(t1; t1); (t2; t2); (t3; t3); (t1; t2); (t2; t1); (t1; t3); (t3; t1)g. Then, the sequence w = t1t2t3t1of transitions de�nes the trace [w] = ft1t2t3t1; t1t3t2t1g (the second sequence t1t3t2t1 canbe obtained from the �rst sequence t1t2t3t1 by permuting the two adjacent independenttransitions t2 and t3 in the �rst sequence). The sequence w contains 4 transition oc-currences. Consider the partial order R � A � A that is graphically represented inFigure 3.1: vertices are elements of A (transition occurrences), while edges are elements

www.manaraa.com

3.3. SELECTIVE SEARCH 31of R (edges implied by transitivity or re
exivity are omitted in Figure 3.1). The set ofall linearizations of this partial order of transition occurrences coincides with the set oftransition sequences in [w].By de�nition, all transition sequences in a given trace contain the same number oftransitions. Moreover, we have the following.Theorem 3.10 Let s be a state in AG. If s w1) s1 and s w2) s2 in AG, and if [w1] = [w2],then s1 = s2.Proof:By de�nition, all w0 2 [w] can be obtained from w by successively permuting pairs ofadjacent independent transitions. It is thus su�cient to prove that, for any two wordsw1 and w2 that di�er only by the order of two adjacent independent transitions, if s w1) s0then s w2) s0.Let us thus assume that w = t1 : : : ab : : : tn and w0 = t1 : : : ba : : : tn. We haves t1! s1 t2! s2 : : : ti! si a! si+1 b! si+2 : : : tn! snand s t1! s1 t2! s2 : : : ti! si b! s0i+1 a! s0i+2 : : : tn! s0n:Since a and b are independent, it follows that si+2 = s0i+2. Since the transitions in w1from si+2 and the transitions in w2 from s0i+2 are identical, we have sn = s0n.3.3 Selective SearchFrom Theorem 3.10, it follows that, in order to determine if a state is reachable by anysequence of transitions in a trace, it is su�cient to explore only one sequence in thattrace. This property is fundamentally what will allow us to explore only a reduced partof the global state space AG of a system in order to prove properties of that system.Indeed, consider for instance the problem of detecting deadlocks, i.e., terminatingstates. A deadlock in a system is a state that is reachable from the initial state s0 of thesystem and where all processes are blocked. Formally, one has:De�nition 3.11 A state s in AG is a deadlock i� there is no transition from s in AG.

www.manaraa.com

32 CHAPTER 3. USING PARTIAL ORDERS TO TACKLE STATE EXPLOSIONIf there is a deadlock d in AG, there is a sequence w of transitions from s0 to d in AG,and hence a trace [w] from s0 to d in AG. Since all sequences w0 2 [w] also lead from s0to d, it is su�cient to explore only one of the w0 in [w] to visit d, and thus to detect it.Consequently, it is su�cient to explore only one interleaving for each trace the systemcan execute from its initial state in order to detect all deadlocks d in this system. Deadlockdetection is thus reduced to the problem of exploring (at least) one interleaving per\maximal" trace the system can execute from its initial state.The latter problem can be solved by performing what we call a selective search inAG. A selective search operates as a classical state-space search except that, at eachstate s reached during the search, it computes a subset T of the set of transitions thatare enabled in s, and explores only the transitions in T , the other enabled transitionsbeing not explored. Clearly, a selective search through AG only reaches a subset (notnecessarily proper) of the states and transitions in AG. If, in each visited state s, the�rst transition of (at least) one interleaving per trace leading to a deadlock is selectedin the set T of transitions to be explored from s, all deadlocks in AG will eventually bevisited by such a selective search.In the next two Chapters, we develop two techniques for computing such sets T :\persistent sets" and \sleep sets". The speci�cation of the algorithms we present inChapters 4 and 5 is thus that they should �nd all deadlocks in AG while exploring assmall a fraction as possible of AG. The veri�cation of more general properties thandeadlock detection will be discussed in Chapters 6 and 7.Before turning to the presentation of persistent sets and sleep sets, let us furtherdiscuss how to detect independency in the description of concurrent systems.
Note 3.12 It might appear that we are using Mazurkiewicz's trace semantics, i.e., thatwe consider that the behavior of a system is the set of all possible traces it can executefrom its initial state. This is not really so. Indeed, to view Mazurkiewicz's theory as asemantics, the dependency relation should be considered as part of the semantics: given adependency relation, one can determine the Mazurkiewicz semantics of a system. The cri-terion for a partial construction of the state space would then be that the Mazurkiewicz'strace semantics are preserved. Here a less restrictive point of view is taken. Indeed, ouronly requirement on selective searches is that they visit enough interleavings to makechecking the desired property possible. The link with Mazurkiewicz's trace semantics isonly in the fact that the algorithms presented in the next Chapters rely on the conceptof independency and on the properties it implies, especially Theorem 3.10.

www.manaraa.com

3.4. DETECTING INDEPENDENCY IN CONCURRENT SYSTEMS 333.4 Detecting Independency in Concurrent Systems3.4.1 Towards More IndependencyThe algorithms presented in this thesis take advantage of the independency between tran-sitions that are simultaneously enabled in order to avoid exploring all their interleavings,and thus to avoid exploring parts of the state space. It is therefore desirable to be ableto detect independency between transitions as e�ciently as possible.In Section 3.1, we gave the following su�cient syntactic condition for two transitionst1 and t2 in T to be independent in our LFCS model.A su�cient syntactic condition for two transitions t1 and t2 in T to be inde-pendent is that:1. the set of processes that are active for t1 is disjoint from the set ofprocesses that are active for t2, and2. the set of objects that are accessed by t1 is disjoint from the set of objectsthat are accessed by t2.Intuitively, \dependency" may arise between two transitions because of either their con-trol part (point 1) or their data part (point 2).We now discuss how more discriminating criteria can be developed.For instance, point 1 of the above condition could be replaced by the new condition:(pre(t1) [post(t1)) \ (pre(t2) [post(t2)) = ;:Indeed, it is easy to show that this new condition also induces a valid dependency re-lation, i.e., that two transitions t1 and t2 that satisfy the new condition and that donot both access a common object cannot enable nor disable each other, and are com-mutative. Moreover, this new condition is weaker than the previous one. Indeed, twotransitions t1 and t2 that satisfy point 1 above also satisfy the new condition, whilethe converse is not true (e.g., consider the two transitions t1 = (fl1g; G1; C1; fl2g) andt2 = (fl3g; G2; C2; fl4g) such that l1; l2; l3; l4 are local states of a same process). Hence,one might think that using the new condition is preferable. Maybe surprisingly, this isnot the case. Indeed, as will appear in the next Chapters, what actually matters is tohave as few dependencies as possible between transitions that may be simultaneously en-abled. Since it can be shown that two transitions t1 and t2 that satisfy the new conditionbut that do not satisfy point 1 above cannot be simultaneously enabled, this particularre�nement of point 1 is actually useless (see Section 4.3).

www.manaraa.com

34 CHAPTER 3. USING PARTIAL ORDERS TO TACKLE STATE EXPLOSIONConcerning point 2, \dependency" may arise if t1 and t2 access a common object.Now, not every pair of operations on an object need be considered as dependent. Thuswe can obtain more independency by considering not only which objects a transitionaccesses, but also which operations on these objects the transition performs.We thus introduce the following de�nition of a valid dependency relation between theoperations on an object.De�nition 3.13 Let O = (V;OP) be an object, and DO � OP � OP be a binaryand symmetric relation. The relation DO is a valid dependency relation for O i� forall op1; op2 2 OP , (op1; op2) 62 DO (op1 and op2 are independent) implies that the twofollowing properties hold for all values v 2 V , and for all inputs in1 and in2:1. if op1(in1; v) is de�ned, with op1(in1; v)! (out1; v01), then op2(in2; v) is de�ned i�op2(in2; v01) is de�ned; and2. if op1(in1; v) and op2(in2; v) are de�ned, then 9out1; out2; v01; v02; v00 such that:� op1(in1; v)! (out1; v01) and op2(in2; v01)! (out2; v00); and� op2(in2; v)! (out2; v02) and op1(in1; v02)! (out1; v00)(commutativity of operations, together with preservation of the outputs).Example 3.14 Consider again the example of an object representing a boolean value. Avalid dependency relation between the operations on this object is given in the followingtable, where \+" means that operations are dependent, while \{" denotes the fact thatoperations are independent: DEP. Write ReadWrite + +Read + {Two Write operations are dependent because they can result in the object having dif-ferent values depending on the order of their execution. A Read and a Write operationsare dependent because the output of the Read can be di�erent depending on the orderof execution of these operations. Two Read operations are independent because they arealways de�ned and return the same output independently of the order of their execution.Now, we can de�ne a dependency relation between transitions in a LFCS from depen-dency relations between operations.

www.manaraa.com

3.4. DETECTING INDEPENDENCY IN CONCURRENT SYSTEMS 35De�nition 3.15 Let T be the set of transitions in a LFCS. Two transitions t1; t2 2 Tare independent if:1. the set of processes that are active for t1 is disjoint from the set of processes thatare active for t2, and2. 8op1 2 used(t1) and 8op2 2 used(t2), if op1 and op2 are two operations on a sameobject, then op1 and op2 are independent.
One can easily check that the dependency relation on transitions obtained with thisde�nition is weaker than the one of Section 3.1 and is a valid one. But, it is possible togo further.3.4.2 Re�ning Dependencies between OperationsIn practice, there are essentially two ways of re�ning dependencies between operations:by re�ning the operations themselves and by using conditional dependency [GP93].Re�ning an operation opi consists of splitting the operation viewed as a set of pairs(INi � V;OUTi � V) in several parts, and considering these di�erent parts as beingdi�erent operations, between which some independency may arise.Example 3.16 Consider again the example of the object corresponding to a booleanvariable. We saw that, in general, two Write operations are dependent. But thereare special cases of Write operations that can be considered as being independent: forinstance, two complementation operations Compl, formally de�ned by Compl({; 0)! ({; 1) and Compl({; 1) ! ({; 0) (always de�ned), can be considered as being independentaccording to De�nition 3.13. We obtain a new dependency relation:DEP. Write Compl ReadWrite + + +Compl + { +Read + + {

In the previous example, the new dependency relation obtained after re�ning theoperation Write may yield less dependencies between the transitions of the program.

www.manaraa.com

36 CHAPTER 3. USING PARTIAL ORDERS TO TACKLE STATE EXPLOSIONIt is thus preferable to use Compl rather than Write whenever possible. In practice,this can be done by adding the operation Compl to the modeling language and byusing it explicitly in the description of the system, or the veri�cation tool could detectautomatically when a Write operation actually performs a Compl operation.The second way of re�ning dependency relations is to de�ne them as being conditional:instead of de�ning a dependency relation that holds for all states s in AG, it is possibleto de�ne a dependency relation for each state individually [KP92a]. De�nition 3.1 thenbecomes:De�nition 3.17 Let T be the set of transitions in a LFCS and D � T � T � S. Therelation D is a valid conditional dependency relation for the LFCS i� for all t1; t2 2 T ; s 2S, (t1; t2; s) 62 D (t1 and t2 are independent in s) implies that (t2; t1; s) 62 D and that thetwo following properties hold in state s:1. if t1 is enabled in s and s t1! s0, then t2 is enabled in s i� t2 is enabled in s0(independent transitions can neither disable nor enable each other); and2. if t1 and t2 are enabled in s, then there is a unique state s0 such that s t1t2) s0 ands t2t1) s0 (commutativity of enabled independent transitions).
De�nition 3.13 can be adapted in a similar way as follows.De�nition 3.18 Let O = (V;OP) be an object, and DO � OP �OP �V . The relationDO is a valid conditional dependency relation for O i� for all op1; op2 2 OP; v 2 V ,(op1; op2; v) 62 DO (op1 and op2 are independent for v) implies that (op2; op1; v) 62 DO andthat the two following properties hold for v, and for all inputs in1 and in2:1. if op1(in1; v) is de�ned, with op1(in1; v)! (out1; v01), then op2(in2; v) is de�ned i�op2(in2; v01) is de�ned; and2. if op1(in1; v) and op2(in2; v) are de�ned, then 9out1; out2; v01; v02; v00 such that:� op1(in1; v)! (out1; v01) and op2(in2; v01)! (out2; v00); and� op2(in2; v)! (out2; v02) and op1(in1; v02)! (out1; v00)(commutativity of operations, with the same outputs).

www.manaraa.com

3.4. DETECTING INDEPENDENCY IN CONCURRENT SYSTEMS 37Note that, in De�nition 3.18, dependency is de�ned for two operations on the same objectfor a particular value v of the object, but for all inputs the operations can have. Thiscould be also re�ned in a similar way by considering di�erent possible inputs separately,etc. For the sake of simplicity, this re�nement will not be considered here.In what follows, two operations on an object Oj, 1 � j � m, will be said to beindependent in state s i� they are independent for the value v 2 Vj of the object Oj instate s.Example 3.19 Consider an object representing a bounded FIFO channel (bu�er) of sizeN . The domain V of possible values for this object is the set of sequences of messagesf;g [M [M2 [: : : [MN , where M is the set of messages that can be transmitted viathe channel. We de�ne three operations Send, Receive and Length on this object suchthat:� Send(v; v1v2 : : : vn)! ({; v1v2 : : : vnv) de�ned if n < N and v 2M ,� Receive({; v1v2 : : : vn)! (v1; v2 : : : vn) de�ned if n > 0,� Length({; v1v2 : : : vn)! (n; v1v2 : : : vn) always de�ned.The following tables give respectively a constant and a conditional dependency relationbetween these operations. If the condition given in the row op and column op0 of thetable is true for the value v 2 V considered (n is the number of messages in the channel),then op and op0 are dependent for v. Otherwise, they are independent. A \{" in thetable represents a condition which is always false (operations always independent).DEP. Send Receive LengthSend + + +Receive + + +Length + + {DEP. Send Receive LengthSend n < N n = 0 or n = N n < NReceive n = 0 or n = N n > 0 n > 0Length n < N n > 0 {Thanks to conditional dependency, operations that are dependent for some but not allvalues v 2 V are no more considered as being dependent for all values.

www.manaraa.com

38 CHAPTER 3. USING PARTIAL ORDERS TO TACKLE STATE EXPLOSIONWe can still reduce dependencies between operations by simultaneously re�ning theoperations and by using conditional dependency.Example 3.20 Consider the previous example. In real protocol models, the operationLength is often used to test if a channel is empty or full [GP93]. Let us introduce twonew operations Empty and Full de�ned as follows:� Empty({; v1v2 : : : vn)! (if (n = 0) then true else false; v1v2 : : : vn) always de�ned.� Full({; v1v2 : : : vn)! (if (n = N) then true else false; v1v2 : : : vn) always de�ned.A new dependency relation can then be de�ned:DEP. Send Receive Length Empty FullSend n < N n = 0 or n = N n < N n = 0 n = N � 1Receive n = 0 or n = N n > 0 n > 0 n = 1 n = NLength n < N n > 0 { { {Empty n = 0 n = 1 { { {Full n = N � 1 n = N { { {
Note that, when using a conditional dependency relation, the de�nition of a trace hasto be slightly modi�ed: two sequencess t1! s1 : : : ti! si a! si+1 b! si+2 : : : tn! snand s t1! s1 : : : ti! si b! s0i+1 a! s0i+2 : : : tn! s0nin AG belong to the same \conditional trace [t1 : : : tn] from state s in AG", denoted[t1 : : : tn]s, if a and b are independent in state si. Conditional traces are thus equivalenceclasses of transition sequences originating from the same state in AG.It is pointed out in [KP92a] that, maybe surprisingly, a conditional trace does notnecessarily correspond anymore to a partial order of transition occurrences: the set ofsequences in a conditional trace does not always correspond to the set of all linearizationsof a partial order. However, Theorem 3.10 is still satis�ed by conditional traces (justreplace in the proof \a and b are independent" by \a and b are independent in si").Since the preservation of this theorem is the main assumption about traces which isneeded by the algorithms we develop in the sequel of this thesis, we will not distinguishtraces from conditional traces unless otherwise speci�ed.

www.manaraa.com

3.4. DETECTING INDEPENDENCY IN CONCURRENT SYSTEMS 393.4.3 SummaryA valid conditional dependency relation between the transitions of a LFCS can be de�nedfrom valid conditional dependency relations between operations on objects as follows.De�nition 3.21 Let T be the set of transitions in a LFCS. Two transitions t1; t2 2 Tare independent in state s 2 S if:1. the set of processes that are active for t1 is disjoint from the set of processes thatare active for t2, and2. 8op1 2 used(t1) and 8op2 2 used(t2), if op1 and op2 are two operations on the sameobject, then op1 and op2 are independent in s.
Since we assumed in Section 2.1 that, in the command of a transition, an operation thatmodi�es the value of a given object cannot be followed by any other operation on thisobject in the remainder of the sequence of operations de�ning the command, it is easyto show that the conditional dependency relation on transitions obtained with the abovede�nition is a valid one.In practice, valid dependency relations between all possible operations on each typeof shared (communication) objects are de�ned as carefully as possible once and for all.They can be represented, for instance, by tables like the ones presented in the previousSection. From these tables and De�nition 3.21, dependencies between transitions canthen be computed directly.For the sake of generality, we will only consider in the sequel the (more general) casewhere a valid conditional dependency relation between transitions is used, though all thealgorithms that are presented in the following Chapters can also be used with a validconstant dependency relation between transitions.In summary, we thus assume in the sequel that, for each type of (communication)objects, a valid conditional dependency relation between all possible operations on theobject is given. Then, for each LFCS, a valid conditional dependency relation for theLFCS is obtained by using De�nition 3.21 and the valid conditional dependency relationson operations on objects used by the transitions of the LFCS. This valid conditional de-pendency relation determines the dependencies between all the transitions of the LFCS.

www.manaraa.com

40 CHAPTER 3. USING PARTIAL ORDERS TO TACKLE STATE EXPLOSION

www.manaraa.com

Chapter 4Persistent Sets
The �rst technique for computing the set of transitions T to consider in a selective searchactually corresponds to a whole family of algorithms [Ove81, Val91, GW91b] that havebeen proposed independently by several researchers. In this Chapter, we show that allthese algorithms actually compute persistent sets, and compare them with each other.Then we present an algorithm that generalizes the previous ones in a sense that will begiven later.4.1 De�nitionPersistent sets were introduced in [GP93]. Intuitively, a subset T of the set of transitionsenabled in a state s of AG is called persistent in s if all transitions not in T that areenabled in s, or in a state reachable from s through transitions not in T , are independentwith all transitions in T . In other words, whatever one does from s, while remainingoutside of T , does not interact with or a�ect T . Formally, we have the following.De�nition 4.1 A set T of transitions enabled in a state s is persistent in s i�, for allnonempty sequences of transitionss = s1 t1! s2 t2! s3 : : : tn�1! sn tn! sn+1from s in AG and including only transitions ti 62 T , 1 � i � n, tn is independent in snwith all transitions in T .Note that the set of all enabled transitions in a state s is trivially persistent since nothingis reachable from s by transitions that are not in this set.41

www.manaraa.com

42 CHAPTER 4. PERSISTENT SETS
1 Initialize:Stack is empty; H is empty;2 push (s0) onto Stack;3 Loop: while Stack 6= ; do f4 pop (s) from Stack;5 if s is NOT already in H then f6 enter s in H;7 T = Persistent Set(s);8 for all t in T do f9 s0 = succ(s) after t; /* t is executed */10 push (s0) onto Stack;11 g12 g13 g

Figure 4.1: Persistent-set selective searchLet a persistent-set selective search be a selective search through AG which, in eachstate s that it reaches, explores only a set T of enabled transitions that is persistent ins, and that is nonempty if there exist transitions enabled in s. Such an algorithm isillustrated in Figure 4.1. Let AR be the reduced state-space explored by a persistent-setselective search. We now prove that such a search reaches all deadlock states of AG (cf.De�nition 3.11), i.e., all deadlocks in AG are also present in AR.Lemma 4.2 Let s be a state in AR, and let d be a deadlock reachable from s in AG bya nonempty sequence w of transitions. For all wi 2 [w]s, let ti denote the �rst transitionof wi. Let Persistent Set(s) be a nonempty persistent set in s. Then, at least one of thetransitions ti is in Persistent Set(s).Proof:Let the sequence w of transitions be t1t2 : : : tn, and let s = s1 t1! s2 t2! s3 : : : tn�1! sn tn! dbe the sequence of states it goes through in AG. Assume �rst that none of the transitionsin w are in Persistent Set(s). Then, by De�nition 4.1 of persistent sets, for all transitionstj, 1 � j � n, tj is independent in sj with all transitions in Persistent Set(s). Thus,by De�nition 3.17 of independent transitions, all transitions in Persistent Set(s) remainenabled in all states sj, 1 � j � n, and in d, which hence cannot be a deadlock. Thus,some transition of the sequence w from s to d must be in Persistent Set(s).

www.manaraa.com

4.2. COMPUTING PERSISTENT SETS 43Let thus tk be the �rst transition in w that is in Persistent Set(s) and let w0 be thesequence tkt1 : : : tk�1tk+1 : : : tn, i.e., the sequence w where the transition tk is moved tothe �rst position. By De�nition 4.1 of persistent sets, we have that for all 1 � j < k, tjis independent with tk in sj. Consequently, by de�nition of a trace, w0 2 [w]s, and thelemma is proved.Theorem 4.3 Let s be a state in AR, and let d be a deadlock reachable from s in AG bya sequence w of transitions. Then, d is also reachable from s in AR.Proof:The proof proceeds by induction on the length of w. For jwj = 0, the result isimmediate. Now, assume the theorem holds for paths (sequences of transitions) of lengthn � 0 and let us prove that it holds for paths w of length n + 1.Assume a deadlock d can be reached from a state s by a path w of length n + 1 inAG. For all wi 2 [w]s, let ti denote the �rst transition of wi. Let Persistent Set(s) bethe nonempty persistent set that is selected in s by the algorithm of Figure 4.1, i.e., theset of transitions that are explored from s in AR. From Lemma 4.2, we know that atleast one of the transitions ti is in Persistent Set(s). Since ti is in Persistent Set(s), it isexplored from state s and a state from which a path of length n leads to the deadlock dis reached in AR. This together with the inductive hypothesis proves the theorem.From Theorem 4.3 it is then immediate to conclude that a persistent-set selectivesearch started in the initial state of AG will explore all deadlocks in AG.4.2 Computing Persistent SetsOf course, the key element required for the implementation of a persistent-set selectivesearch is an algorithm for computing persistent sets. Several such algorithms have beenproposed independently by various researchers [Ove81, Val91, GW91b]. In this Chapter,we present these algorithms, and show that they all compute persistent sets.All these algorithms infer the persistent sets from the static structure (code) of thesystem being veri�ed. They di�er by the type of information about the system de-scription that they use. The aim of these algorithms is to obtain the smallest possiblenonempty persistent sets. Usually, the more information about the system descriptionthe algorithm uses, the smaller the persistent set it produces can be, albeit at the cost ofa higher computational complexity. Note that exploring the smallest number of enabledtransitions at each step of the search is only a heuristics: it does not necessary lead tothe exploration of the smallest number of states. We will come back to this point inSection 4.8.

www.manaraa.com

44 CHAPTER 4. PERSISTENT SETS
1. Take one transition t that is enabled in s. Let T = ftg.2. For all transitions t in T , add to T all transitions t0 such that(a) t and t0 are in con
ict; or(b) t and t0 are parallel and 9op 2 used(t); 9op0 2 used(t0) : op and op0 can-be-dependent.3. Repeat step 2 until a disabled transition is introduced in T , or until no more tran-sitions need be added. If there is a disabled transition in T , return the set of allenabled transitions (this algorithm was not able to compute a nontrivial persistentset). Else, return the set T .Figure 4.2: Algorithm 14.3 Algorithm 1 (Con
icting Transitions)The simplest algorithm for computing persistent sets in a state s is certainly the onethat merely computes the set of all transitions that are enabled in s. Indeed, as pointedout in the Section 4.1, this set is trivially persistent in s. Of course, the state space ARexplored by a selective search using such an algorithm is then exactly the global statespace AG, which is precisely what we want to avoid.A simple algorithm for computing nontrivial persistent sets, adapted from [GW91b,GW93], is given in Figure 4.2. This algorithm uses the following de�nitions.De�nition 4.4 Two transitions t1 and t2 are said to be in con
ict i� (pre(t1)\pre(t2)) 6=; (there exists a process Pi that is active for both t1 and t2, and such that Pi can choosebetween t1 and t2 from its local state (pre(t1) \ pre(t2) \ Pi)).De�nition 4.5 Two transitions t1 and t2 are said to be parallel i� (active(t1)\active(t2)) =; (the set of processes that are active for t1 is disjoint from the set of processes that areactive for t2).In practice, checking whether two transitions are in con
ict or parallel is a direct syntacticcheck.De�nition 4.6 Two operations op1 and op2 on a same object can-be-dependent if thereexists a state s in S such that op1 and op2 are dependent in s.

www.manaraa.com

4.3. ALGORITHM 1 (CONFLICTING TRANSITIONS) 45(Remember that S is the set of states of the LFCS and that S includes all states in AG.)In practice, a relation \can-be-dependent" between operations on a given object is easilyobtained from the dependency relation between these operations.The algorithm of Figure 4.2, let us call it Algorithm 1, starts by taking arbitrarily atransition t that is enabled in the current state s (step 1). To build a persistent set Tcontaining t, all transitions that could \interfere" with t have to be included in T . Forthis reason, transitions that are in con
ict with t, and transitions that are parallel andthat use operations that can-be-dependent with operations used by t are introduced intoT (step 2). Step 2 is repeated until a disabled transition is introduced into T , or untilno more transitions need be added (step 3). Then, if all transitions in T are enabled ins, T is returned. Else, Algorithm 1 was not able to compute a nontrivial persistent set.We now prove that Algorithm 1 computes persistent sets.Theorem 4.7 Any set of transitions that is returned by Algorithm 1 is a persistent setin the current state s.Proof:Let T 0 be a set of transitions that is returned by Algorithm 1, and let T denote the setof transitions that have been considered in step 2 of the algorithm during this run. If Tcontains a disabled transition, T 0 is the set of all enabled transitions in s, and is triviallypersistent in s. Else, T 0 = T , and T contains exclusively enabled transitions.Suppose that T is not persistent in s. Thus, by De�nition 4.1, there exists in AG asequence s = s1 t1! s2 t2! s3 : : : tn�1! sn tn! sn+1 of transitions t1; t2; : : : ; tn 62 T , such thattn is dependent in sn with some transition t 2 T . Consider the shortest such a sequence.For this sequence, not only tn is dependent in sn with some transition t 2 T , but also,for all 1 � i < n, ti is independent in si with all transitions in T . Let us show that sucha sequence cannot exist.Assume that t and tn are in parallel. We know from De�nition 3.21 that a su�cientsyntactic condition for two transitions t and tn to be independent in a state sn is that theyare parallel and 8op1 2 used(t) and 8op2 2 used(tn), if op1 and op2 are two operationson a same object, then op1 and op2 are independent in sn. Since t and tn are dependentin sn, this implies that 9op 2 used(t); 9op0 2 used(tn) : op and op0 are dependent in sn.Consequently, op and op0 can-be-dependent according to De�nition 4.6. Hence, by step2.b of the algorithm, tn has to be included in T . If tn is disabled in s, this contradictsour assumption that T contains exclusively enabled transitions. If tn is enabled in s, thiscontradicts the assumption that tn 62 T . Therefore, we conclude that t and tn are notparallel.

www.manaraa.com

46 CHAPTER 4. PERSISTENT SETSSince t and tn are not parallel, by De�nition 4.5, there exists at least one process Pithat is active for both transitions t and tn: Pi 2 (active(t) \ active(tn)). Let s(i) denotethe local state of process Pi in s (i.e., the ith component of s), and let sn(i) be the localstate of Pi in sn. Since t is enabled in s and Pi 2 active(t), s(i) 2 pre(t). Moreover, sincetn is enabled in sn and Pi 2 active(tn), sn(i) 2 pre(tn). If t and tn are in con
ict, tn hasto be included in set T by step 2.a of the algorithm, which yield a contradiction with theassumption that T contains exclusively enabled transitions and tn 62 T . Hence, t and tnare not in con
ict. Since t and tn are not in con
ict, we know that (pre(t)\pre(tn)) = ;,and thus s(i) 6= sn(i). This means that, after the execution of the sequence t1t2 : : : tn�1,process Pi has moved from its local state s(i) to its local state sn(i). Hence, t is disabledin sn (Pi is not ready to execute t in sn). Consequently, there exists a transition tk,1 � k < n, such that t is enabled in sk and disabled in sk+1. In other words, t and tk aredependent in sk. This contradicts the assumption that for all 1 � i < n, ti 62 T and ti isindependent in si with all transitions in T .Example 4.8 Consider a system containing two processes A = fa0; a1; a2g and B =fb0; b1g, two objects x and y of type \boolean variable", and three transitionst1 = (a0; true; x := 1; a1), t3 = (b0; true; y := 1; b1),t2 = (a1; true; y := 0; a2).Consider the state s = (a0; b0; 0; 0) 2 A � B � Vx � Vy. In state s, both transitions t1and t3 are enabled, and a classical search will therefore execute both of them. However,transition t1 is not in con
ict with any other transition. Moreover, t1 uses only a Writeoperation on object x, which cannot be accessed by transitions that are parallel with t1(object x is \local" to process A). Therefore, running Algorithm 1 with t1 as the initialenabled transition taken in step 1 of the algorithm returns ft1g. Thus, a persistent-setselective search using Algorithm 1 may only execute transition t1 from state s.Step 1 of Algorithm 1 is nondeterministic: a transition t that is enabled in s is arbi-trarily chosen to start the persistent set construction. For a given state s, let Algo1(t)denote the persistent set that is returned by Algorithm 1 when t is the enabled transitionchosen in step 1 of the algorithm. Assume that, from any transition t, it takes O(1) timeto obtain a transition t0 satisfying either condition 2.a or 2.b.1 Since Algorithm 1 stops(step 3) as soon as a disabled transition is introduced in T , step 2 can be executed at mostjenabled(s)j times, where jenabled(s)j denotes the number of transitions that are enabledin s. For the same reason, each time step 2 is executed, at most jenabled(s)j transitions t01This can be done by using appropriate data structures to encode the relationships between transitionsaccording to conditions 2.a and 2.b.

www.manaraa.com

4.4. ALGORITHM 2 (OVERMAN'S ALGORITHM) 47can be checked and be added to set T . Hence, the worst-case time complexity of Algo1(t)is O(jenabled(s)j2).Let PS1(s) denote the set of persistent sets in a state s that can be computed byAlgorithm 1: PS1(s) = fAlgo1(t)jt 2 enabled(s)g. In practice, for a given state s, itmay be useful to run Algorithm 1 several times with di�erent initial enabled transitions(step 1) in order to compute several persistent sets in s, and then to choose the smallestpersistent set that has been obtained. However, given the symmetry of the relationbetween t and t0 in step 2 of Algorithm 1, it is easy to see that, if Algo1(t) did notencounter any disabled transitions, we have8t0 2 Algo1(t) : Algo1(t0) = Algo1(t):Hence, once Algo1(t) has been computed, it is useless to compute Algo1(t0) with t0 2Algo1(t), i.e., to rerun Algorithm 1 with t0 as the starting transition, when the compu-tation of Algo1(t) did not encounter any disabled transitions. Moreover, we also knowthat the computation of Algo1(t0) with t0 62 Algo1(t) will not consider again transitions inAlgo1(t). Therefore, the worst-case time complexity to compute the smallest persistentset in PS1(s), let us denote it by min(PS1(s)), is also O(jenabled(s)j2).Note 4.9 Algorithm 1 is equivalent to an algorithm that appeared in [GW91b, GW93].In [GW91b, GW93], concurrent systems were represented by a set of communicatingautomata, i.e., a parallel composition of sequential processes (no objects). For the par-ticular model and de�nition of dependency used in [GW91b, GW93], two transitionsthat are parallel cannot be dependent, and step 2 of Algorithm 1 reduces to point 2.aonly, point 2.b can be deleted. It is pointed out in [GW91b, GW93] that Algorithm 1can be implemented in such a way that its time complexity is the same as the one ofthe computation of the set of all the transitions that are enabled in s, by interleavingboth computations, instead of computing �rst the set of enabled transitions as implic-itly assumed in the above discussion. Finally note that the procedure given in page 420of [Pel93] is similar to Algorithm 1.4.4 Algorithm 2 (Overman's Algorithm)A more elaborate algorithm for computing nontrivial persistent sets is given in Fig-ure 4.3. Let us call it Algorithm 2. This algorithm is an adaptation of an algorithmthat appeared in [Ove81]. The algorithm presented in [Ove81] (page 105) only con-sidered concurrent systems composed of \non-cycling" (no loops) and \non-branching"processes communicating exclusively via shared variables. Thus, the correspondence be-tween Algorithm 2 and the one of [Ove81] might seem rather loose. However, the basicalgorithmic idea is the same.

www.manaraa.com

48 CHAPTER 4. PERSISTENT SETS
1. Take one transition t that is enabled in s. Let P = active(t).2. For all processes Pi in P , for all transitions t such that s(i) 2 pre(t), add to P allprocesses Pj such that(a) Pj 2 active(t); or(b) Pj 2 active(t0) for some t0 such that t and t0 are parallel and9op 2 used(t); 9op0 2 used(t0) : op and op0 can-be-dependent.3. Repeat step 2 until no more processes need be added. Then, return all transitions tsuch that active(t) � P and t is enabled in s.Figure 4.3: Algorithm 2Unlike Algorithm 1, Algorithm 2 can consider disabled transitions, and uses informa-tion about processes. More precisely, it uses information about which transitions can beaccessed by process Pi from its current local state s(i). Algorithm 2 starts by consideringthe set P of processes that are active for one given enabled transition (step 1). Then,for all transitions t \originating from" the current local state s(i) of a process Pi in setP , i.e., for all transitions t such that s(i) 2 pre(t), all other processes that are active fort, or that are active for a transition t0 that is parallel and that uses operations that can-be-dependent with operations used by t, are added to set P (step 2). Step 2 is repeateduntil no more processes need be added to P (step 3). Finally, all enabled transitions forwhich processes in P are active are returned.We now prove that Algorithm 2 computes persistent sets.Theorem 4.10 Any set of transitions that is returned by Algorithm 2 is a persistent setin the current state s.Proof:Let T be a set of transitions that is returned by Algorithm 2, and let P denote theset of processes that have been considered in step 2 of the algorithm during this run.The proof is by contradiction. Suppose that T is not persistent in s. Thus, byDe�nition 4.1, there exists in AG a sequence s = s1 t1! s2 t2! s3 : : : tn�1! sn tn! sn+1 oftransitions t1; t2; : : : ; tn 62 T , such that tn is dependent in sn with some transition t 2 T .Consider the shortest such a sequence. For this sequence, not only tn is dependent in snwith some transition t 2 T , but also, for all 1 � i < n, ti is independent in si with alltransitions in T . Let us show that such a sequence cannot exist.

www.manaraa.com

4.4. ALGORITHM 2 (OVERMAN'S ALGORITHM) 49Assume that t and tn are in parallel. We know from De�nition 3.21 that a su�cientsyntactic condition for two transitions t and tn to be independent in a state sn is that theyare parallel and 8op1 2 used(t) and 8op2 2 used(tn), if op1 and op2 are two operationson a same object, then op1 and op2 are independent in sn. Since t and tn are dependentin sn, this implies that 9op 2 used(t); 9op0 2 used(tn) : op and op0 are dependent in sn.Consequently, op and op0 can-be-dependent according to De�nition 4.6. Hence, by step2.b of the algorithm, we have active(tn) � P .Now, assume that t and tn are not parallel. By De�nition 4.5, there exists at leastone process Pi that is active for both transitions t and tn: Pi 2 (active(t) \ active(tn)).Note that, since t 2 T , active(t) � P , and thus Pi 2 P . Let s(i) denote the local stateof process Pi in s (i.e., the ith component of s), and let sn(i) be the local state of Pi insn. Since tn is enabled in sn and Pi 2 active(tn), sn(i) 2 pre(tn). If s(i) = sn(i), by step2.a of the algorithm, we have again active(tn) � P .Consider the case where s(i) 6= sn(i). Since t is in T , t is enabled in s, and s(i) 2 pre(t).Since s(i) 6= sn(i), t is disabled in sn (Pi is not ready to execute t in sn). Consequently,there exists a transition tk, 1 � k < n, such that t is enabled in sk and disabled in sk+1.In other words, t and tk are dependent in sk. This contradicts the assumption that forall 1 � i < n, ti 62 T and ti is independent in si with all transitions in T .In summary, we have active(tn) � P . If tn is enabled in s, tn is in the set T returnedby the algorithm, which contradicts the assumption that tn 62 T . Therefore, tn is disabledin s.Since tn is disabled in s and enabled in sn, there exists a transition tk, 1 � k < n, suchthat tn is disabled in sk and enabled in sk+1. In other words, tn and tk are dependent insk. If, for all transitions tl, 1 � l < n, (active(tl)\active(tn)) = ;, we have s(i) 2 pre(tn)for all Pi 2 active(tn), and active(tk) � P by step 2.b of the algorithm (1). Else, thereexists a transition tl, 1 � l < n, such that Pi 2 active(tn) and Pi 2 active(tl). Let tlbe the �rst such transition in the sequence t1t2 : : : tn�1. We have s(i) = sl(i) since tl isthe �rst transition in the sequence t1t2 : : : tn�1 for which Pi is active. Since tl is enabledin sl, sl(i) 2 pre(tl). Since active(tn) � P , we have Pi 2 P , and active(tl) � P by step2.a of the algorithm (2). In summary, in both cases (1) and (2), there exists a transitiontm, 1 � m < n such that active(tm) � P . If tm is enabled in s, it is returned by thealgorithm and is thus in T , which contradicts the assumption that tm 62 T . Therefore,tm is disabled in s.By repeating the same reasoning, one comes to the conclusion that active(t1) � P .Since t1 is enabled in s, this means that t1 2 T , which contradicts the assumption thatt1; : : : ; tn 62 T .Example 4.11 Consider a system containing two processes A = fa0; a1; a2; a3g and

www.manaraa.com

50 CHAPTER 4. PERSISTENT SETSB = fb0; b1g, two objects x and y of type \boolean variable", and four transitionst1 = (a0; true; x := 1; a1), t4 = (b0; true; y := 1; b1);t2 = (a0; x = 1; x := 0; a3),t3 = (a1; true; y := 0; a2).Consider the state s = (a0; b0; 0; 0) 2 A�B�Vx�Vy. In state s, both transitions t1 andt4 are enabled, and a classical search will therefore execute both of them. Since transitiont1 is in con
ict with transition t2 which is disabled in s, Algo1(t1) = ft1; t4g. However,Algorithm 2 starting with t1 as the initial enabled transition taken in step 1 introducesprocess A in set P . Then, it checks in step 2 if other processes have to be added to P .Since the only process that is active for the two transitions t1 and t2 originating from a0is A, and since these two transitions only use object x, which is not used by transitionsthat are parallel with t1 or t2, process B does not need be included in P . Therefore,Algorithm 2 returns ft1g, and a persistent-set selective search using Algorithm 2 mayonly execute transition t1 from state s.As in Algorithm 1, step 1 of Algorithm 2 is nondeterministic. For a given state s, letAlgo2(t) denote the persistent set that is returned by Algorithm 2 when t is the enabledtransition chosen in step 1 of the algorithm. Step 2 of Algorithm 2 can be executed atmost jPj times, where jPj is the number of processes in the system. Each time step 2is executed, at most jPj processes Pj can be added to set P . If we assume that, fromany process Pi, it takes O(1) time to obtain a process Pj satisfying either condition 2.aor 2.b2, the worst-case time complexity for executing step 2 of Algorithm 2 is O(jPj2),and, assuming jenabled(s)j smaller than jPj2, the worst-case time complexity of Algo2(t)is also O(jPj2).Let PS2(s) denote the set of persistent sets in a state s that can be computed byAlgorithm 2: PS2(s) = fAlgo2(t)jt 2 enabled(s)g. It is easy to see that8t0 2 Algo2(t) : Algo2(t0) � Algo2(t):Therefore, it may be useful to rerun Algorithm 2 with transitions t0 taken from a persistentset already obtained by a previous run, to determine if this persistent set contains anothersmaller persistent set. We will come back to this issue at the end of the next Section.2This can be done by using appropriate data structures to encode the relationships between processesaccording to conditions 2.a and 2.b. For instance, for all possible local states s(i) of each process Pi,a table that tells which processes have to be included in set P when Pi is in its local state s(i) can becomputed at compile time.

www.manaraa.com

4.5. ALGORITHM 3 (STUBBORN SETS) 514.5 Algorithm 3 (Stubborn Sets)4.5.1 Basic IdeaYet a more elaborate technique for computing persistent sets is the stubborn set techniqueof Valmari [Val91]. Unlike Algorithm 2, the stubborn set technique also uses informationabout the internal structure of the processes of the system. Before de�ning stubbornsets, we need the following de�nition [Val91].De�nition 4.12 Two transitions t1 and t2 do-not-accord with each other if there existsa state s in S such that t1 and t2 are enabled in s and are dependent in s.Two transitions do-not-accord with each other if there exists a state where they are bothenabled and dependent. We can de�ne a similar relation on operations on objects.De�nition 4.13 Two operations op1 and op2 on the same object do-not-accord witheach other if there exists a state s in S such that op1 and op2 are de�ned in s and aredependent in s.This de�nition is slightly weaker than De�nition 4.6, i.e., the relation do-not-accord isincluded in the relation can-be-dependent. Indeed, two operations that do-not-accordcan-be-dependent, while the converse does not hold, since two operations that are de-pendent in a state s need not be both de�ned in that state. In practice, a relation\do-not-accord" between operations on a given object is easily obtained from the depen-dency relation between these operations.We now introduce a new de�nition that will help us to capture the basic algorithmicidea of stubborn sets without referring to a particular model for representing concurrentsystems.De�nition 4.14 Let t be a transition that is disabled in a state s. A necessary enablingset for t in s, denoted NES(t; s), is a set of transitions such that, for all states s0 suchthat t is enabled in s0, for all sequences w of transitions from s to s0 in AG, w containsat least one transition of NES(t; s).In other words, a necessary enabling set NES(t; s) for t in s is a set of transitions suchthat t cannot become enabled (in some successor s0 of s in AG) before at least onetransition in NES(t; s) is executed.Stubborn sets3 can then be de�ned as follows (adapted from [Val91]; see also Note 4.17below).3\Strong stubborn sets" according to Valmari's terminology. \Weak stubborn sets" will be consideredlater.

www.manaraa.com

52 CHAPTER 4. PERSISTENT SETSDe�nition 4.15 A set Ts of transitions is a stubborn set in a state s if Ts contains atleast one enabled transition, and if for all transitions t 2 Ts, the two following conditionshold:1. if t is disabled in s, then all transitions in one necessary enabling set NES(t; s) fort in s are also in Ts;2. if t is enabled in s, then all transitions t0 that do-not-accord with t are also in Ts.A stubborn set Ts in a state s is thus a set of transitions. Transitions in this set can beeither enabled or disabled in s. Let T be the set of all transitions in Ts that are enabledin s. By the de�nition of Ts, T is nonempty. We now prove that T is a persistent set ins.Theorem 4.16 Let T be the set of all transitions in a stubborn set Ts in state s that areenabled in s. Then, T is a persistent set in s.Proof:The proof is by contradiction. Suppose that T is not persistent in s. Thus, byDe�nition 4.1, there exists in AG a sequence s = s1 t1! s2 t2! s3 : : : tn�1! sn tn! sn+1 oftransitions t1; t2; : : : ; tn 62 T , such that tn is dependent in sn with some transition t 2 T .Consider the shortest such a sequence. For this sequence, not only tn is dependent in snwith some transition t 2 T , but also, for all 1 � i < n, ti is independent in si with alltransitions in T . Let us show that such a sequence cannot exist.Since t 2 T , t 2 Ts and t is enabled in s. Since, for all 1 � i < n, ti is independent insi with all transitions in T , including t, t remains enabled in all states si+1. Since t and tnare both enabled in sn and are dependent in sn, they do-not-accord (cf. De�nition 4.12),and tn is in Ts by point 2 of De�nition 4.15.If tn is enabled in s, then we have tn 2 T , which contradicts the assumption thatt1; : : : ; tn 62 T . Thus, tn is disabled in s. Since tn is enabled in sn, there exists anonempty necessary enabling set NES(tn; s) for tn in s, and (at least) one transition tj,1 � j < n, is in NES(tn; s) (cf. De�nition 4.14). By point 1 of De�nition 4.15, tj isin Ts. Again, if tj is enabled in s, then tj 2 T , which contradicts the assumption thatt1; : : : ; tn 62 T . Thus, tj is disabled in s. By repeating the same reasoning, one comes tothe conclusion that t1 is in Ts. Since t1 is enabled in s, this means that t1 2 T , whichcontradicts the assumption that t1; : : : ; tn 62 T .Stubborn sets can thus be used to compute persistent sets: by taking all transitionsin a stubborn set Ts that are enabled in s, one obtains a persistent set.

www.manaraa.com

4.5. ALGORITHM 3 (STUBBORN SETS) 53Note 4.17 The basic algorithmic idea of stubborn sets is captured by De�nition 4.15introduced in this Section. This de�nition is general, abstract, in the sense that it is inde-pendent of any particular model. In contrast, de�nitions of stubborn sets that appearedin the literature were tailored for particular models like Variable/Transition Systems,Elementary Nets, Place/Transition Nets, Coloured Petri Nets, etc (e.g., see [Val91]). Allthese particular de�nitions can be viewed as \implementations" of the general de�nitionwe have given in this Section. Algorithm 3 that will be presented in the next Section issuch an \implementation" of De�nition 4.15 for systems represented by LFCS's.4.5.2 AlgorithmFrom the general de�nition of stubborn sets given above, it is possible to obtain an algo-rithm for computing stubborn sets Ts for systems represented by LFCS's. To obtain suchan \implementation", we need to give a practical way to compute (and thus approximate)the concepts that appear in De�nition 4.15.The resulting algorithm, Algorithm 3, is presented in Figure 4.4. Algorithm 3 starts bytaking a transition t that is enabled in s (step 1). To compute a stubborn set containingt, the two rules 2.a and 2.b are applied repeatedly to all transitions introduced in Ts (step2) until no more transitions need be added (step 3). Then, all the transitions in the Tsthat are enabled in s are returned, the other transitions in Ts are discarded.To prove that Algorithm 3 returns persistent sets in s, thanks to Theorem 4.16, it issu�cient to show that the sets Ts that it computes are stubborn sets in s according toDe�nition 4.15. To show this, we have to prove that the rules 2.a and 2.b are safe ap-proximations of respectively point 1 and 2 of De�nition 4.15, i.e., that enough transitionsare included in set Ts by Algorithm 3 to make it a stubborn set in s .Theorem 4.18 All sets Ts that are computed by Algorithm 3 are stubborn sets in s.Proof:Let Ts be a set of transitions that is computed by Algorithm 3. Let us show that Tsis a stubborn set in s.Consider a transition t 2 Ts that is disabled in s. With our LFCS model, a transitiont = (L;G;C; L0) is disabled in a state s if either there is a process Pj 2 active(t) such thats(j) 6= (L \ Pj) (process Pj that is active for t is not ready to execute transition t fromits current local state s(j)), or there is a condition cj in the conjunction G that evaluatesto false in s. In the �rst case, the set of all transitions t0 such that (pre(t)\Pj) 2 post(t0)is a necessary enabling set NES(t; s) for t in s (the execution of such a transition t0 isnecessary to make t enabled). In the second case, the set of all transitions t0 that use

www.manaraa.com

54 CHAPTER 4. PERSISTENT SETS
1. Take one transition t that is enabled in s. Let Ts = ftg.2. For all transitions t in Ts:(a) if t is disabled in s, either:i. choose a process Pj 2 active(t) such that s(j) 6= (pre(t) \ Pj); then, add to Tsall transitions t0 such that (pre(t) \ Pj) 2 post(t0).ii. choose a condition cj in the guard G of t that evaluates to false in s; then,for all operations op used by t to evaluate cj, add to Ts all transitions t0 suchthat 9op0 2 used(t0) : op and op0 can-be-dependent.(b) if t is enabled in s, add to Ts all transitions t0 such thati. t and t0 are in con
ict; orii. t and t0 are parallel and 9op 2 used(t); 9op0 2 used(t0) : op and op0 do-not-accord.3. Repeat step 2 until no more transitions need be added. Then, return all transitionsin Ts that are enabled in s (transitions in Ts that are disabled in s are discarded).Figure 4.4: Algorithm 3an operation op0 that can-be-dependent with an operation op used to evaluate cj is anecessary enabling set NES(t; s) for t in s (only the execution of such an operation op0can change the output returned by op, and hence the truth value of cj).Consider a transition t 2 Ts that is enabled in s. We have to show that the set ofall transitions t0 that are added to Ts by step 2.b of Algorithm 3 includes all transitionsthat do-not-accord with t. Consider a transition t0 such that t and t0 do-not-accord. Letus show that t0 is in Ts.If t and t0 are not parallel, this implies by De�nition 4.5 that at least one processis active for both transitions t and t0: Pi 2 (active(t) \ active(t0)). If t and t0 are incon
ict, t0 is added to Ts by step 2.b.i. If t and t0 are not in con
ict, we know that(pre(t) \ pre(t0)) = ;. Therefore, (pre(t) \ Pi) 6= (pre(t0) \ Pi), and it is impossible fort and t0 to be simultaneously enabled (process Pi cannot be in two di�erent local states(pre(t)\Pi) and (pre(t0)\Pi) at the same time), which contradicts the assumption thatt and t0 do-not-accord.Assume now that t and t0 are parallel. Since t and t0 do-not-accord, there exists astate s0 2 S where t and t0 are enabled in s0 and are dependent in s0, by De�nition 4.12.Moreover, we know from De�nition 3.21 that a su�cient syntactic condition for twotransitions t and t0 to be independent in a state s0 is that they are parallel and 8op1 2used(t) and 8op2 2 used(t0), if op1 and op2 are two operations on a same object, then

www.manaraa.com

4.5. ALGORITHM 3 (STUBBORN SETS) 55op1 and op2 are independent in sn. Since t and t0 are dependent in s0, this implies that9op 2 used(t); 9op0 2 used(t0) : op and op0 are dependent in s0. Moreover, since t and t0are enabled in s0, this implies that both op and op0 are de�ned in s0. Consequently, op andop0 do-not-accord according to De�nition 4.13. Hence, by step 2.b.ii of the algorithm, t0is included in Ts.Example 4.19 Consider a system containing two processes A = fa0; a1; a2g and B =fb0; b1g, two objects x and y of type \boolean variable", and four transitionst1 = (a0; true; x := 1; a1), t3 = (b0; true; y := 1; b1),t2 = (a1; true; y := 0; a2), t4 = (b1; true; x := 0; b0).Consider the state s = (a1; b1; 0; 0) 2 A�B�Vx�Vy. In state s, both transitions t2 andt4 are enabled. As an exercice, the reader can compute what the persistent sets that canbe returned by Algorithms 1 and 2 are. Actually, Algo1(t2) = Algo1(t4) = Algo2(t2) =Algo2(t4) = ft2; t4g. In other words, neither Algorithm 1, nor Algorithm 2 are able toreturn a nontrivial persistent set for this example. Let us investigate how Algorithm 3,in contrast, is able to determine that ft4g is a persistent set in s. Starting with t4 asthe initial enabled transition taken in step 1, Algorithm 3 has to include transition t1 inTs by step 2.b since both t4 and t1 use a Write operation on object x, and since twoWrite operations do-not-accord (they are always de�ned and dependent; cf. Sections 2.1and 3.4). Since t1 is disabled in s, and since the only condition for which it is disabledin s is that process A, which is active for it, is not ready to execute it, step 2.b.i addsto Ts all transitions t0 such that a0 2 post(t0). There are no such transitions, and thecomputation of Ts stops. Hence, Algo3(t4) = ft4g, and a persistent-set selective searchusing Algorithm 3 may only execute transition t4 from state s.As in Algorithms 1 and 2, step 1 of Algorithm 3 is nondeterministic. For a givenstate s, let Algo3(t) denote a persistent set that is returned by Algorithm 3 when t is theenabled transition chosen in step 1 of the algorithm. During the computation of Algo3(t),Step 2 of Algorithm 3 can be executed at most jT j times, where jT j is the number oftransitions in the system. Each time step 2 is executed, at most jT j transitions t0 can bechecked and be added to set Ts. If we assume that, from any transition t, it takes O(1)time to obtain a transition t0 satisfying either condition 2.a or 2.b, the worst-case timecomplexity of Algo3(t) is O(jT j2).Note that point 1 of De�nition 4.15, and hence step 2.a of Algorithm 3, are alsonondeterministic: one can choose arbitrarily any necessary enabling set NES(t; s) for tin s, and then add to Ts all transitions in this set NES(t; s). Therefore, the choice ofa NES(t; s) in
uences the set of transitions that have to be added to Ts, and thus the

www.manaraa.com

56 CHAPTER 4. PERSISTENT SETSsize of Ts and the number of enabled transitions it contains. A priori, it is not possibleto predict what choice will yield the smallest persistent set. In other words, executingAlgorithm 3 several times with the same starting enabled transition taken in step 1 ofthe algorithm may return di�erent persistent sets, if di�erent choices of NES(t; s) aremade for disabled transitions in Ts.To avoid redundant work during successive executions of Algorithm 3 when searchingfor a minimal persistent set, a systematic approach, investigated in [Val88a, Val88b],consists in viewing each transition in T as a vertex of a directed graph, and each relationof the form \if t is in Ts, then add t0 to Ts" according to step 2.a or 2.b as an edgefrom vertex t to vertex t0. The problem of �nding the smallest persistent set that canbe computed by Algorithm 3 is then reduced to a graph-theoretic problem. In [Val88b],it is shown that the problem can be solved in O(jT j3j). If the nondeterminism of step2.a of Algorithm 3 is resolved in a unique way for each disabled transition, then the timecomplexity becomes linear in the number of edges in the graph, i.e., O(jT j2j) [Val88a].4Interestingly, it can be shown that the same technique can be applied to �nd thesmallest persistent set that can be computed by Algorithm 2 (since the only nondeter-ministic step in Algorithm 2 is step 1): each process is viewed as a vertex of a directedgraph, and each relation \if Pi is in P , then add Pj to P" according to step 2.a or 2.b ofAlgorithm 2 corresponds to an edge from vertex Pi to vertex Pj. The time complexityfor computing the smallest persistent set in PS2(s), i.e., the set of persistent sets thatcan be computed by Algorithm 2, is thus O(jPj2).4.6 ComparisonIn this Section, we compare the persistent sets that can be computed by the three algo-rithms presented in the previous Sections.For a given state s, let Algoi(t) denote the persistent set that is returned by Algorithm iwhen t is the enabled transition chosen in step 1 of Algorithm i, for i 2 f1; 2g. We canprove the following.Theorem 4.20 For all transitions t that are enabled in a state s, we have Algo2(t) �Algo1(t).4If for all transitions t, the number of transitions t0 that satisfy either point 1 or point 2 of Def-inition 4.15 is bounded by a constant C < jT j, the time complexity of the two algorithms becomesO(CjT j2) and O(CjT j) respectively, as assumed in [Val88a, Val88b].

www.manaraa.com

4.6. COMPARISON 57Proof:If Algo1(t) is the set of all transitions that are enabled in s, the result is immediate.Thus, assume this is not the case. This means that the set T of transitions constructedin step 2 of Algorithm 1 during the computation of Algo1(t) contains only enabled tran-sitions, and we have Algo1(t) = T . Let P denote the set of processes that have beenconsidered in step 2 of Algorithm 2 during the computation of Algo2(t). Let T 2s be theset ft j9Pi 2 P : s(i) 2 pre(t)g. By construction, Algo2(t) is the set of all transitions inT 2s that are enabled in s. We now prove that, for all transitions t 2 T , if t 2 T 2s , then alltransitions t0 that are added to T 2s because of t by step 2 of Algorithm 2 are in T .If t0 is added to T 2s because of t by step 2.a of Algorithm 2, this means that thereexists a process Pj 2 P such that Pj 2 active(t) and s(j) 2 pre(t0). Since t is enabledin s, s(j) 2 pre(t), and t and t0 are in con
ict. Consequently, t0 is in T by step 2.a ofAlgorithm 1.If t0 is added to T 2s because of t by step 2.b of Algorithm 2, this means that thereexists a process Pj 2 P such that s(j) 2 pre(t0) and Pj 2 active(t00) for some t00 such thatt and t00 are parallel and 9op 2 used(t); 9op0 2 used(t00) : op and op0 can-be-dependent.Consequently, by step 2.b of Algorithm 1, t00 is in T . Hence, t00 is enabled in s, and wehave s(j) 2 pre(t00). This implies that t00 is in T 2s . This also implies that t00 and t0 are incon
ict, and t0 is in T by step 2.a of Algorithm 1.We have just proved that, for all transitions t 2 T , if t 2 T 2s , then all transitions thatare added to T 2s because of t by step 2 of Algorithm 2 are in T . Consequently, T 2s � T ,and thus Algo2(t) � Algo1(t).Thus, the persistent set Algo2(t) returned by Algorithm 2 is always a subset (notnecessarily proper) of the persistent set Algo1(t) returned by Algorithm 1.A similar relation holds between Algorithm 2 and 3, except that, since step 2.a of Al-gorithm 3 is nondeterministic, the formulation of the theorem has to be slightly modi�ed.Theorem 4.21 For all transitions t that are enabled in a state s, there exists an execu-tion of Algorithm 3 that returns a persistent set Algo3(t) such that Algo3(t) � Algo2(t).Proof:Let P denote the set of processes that have been considered in step 2 of Algorithm 2during the computation of Algo2(t). Let T 2s be the set ft j9Pi 2 P : s(i) 2 pre(t)g. Byconstruction, Algo2(t) is the set of all transitions in T 2s that are enabled in s. If Ts isa stubborn set constructed by Algorithm 3 during the computation of a persistent setAlgo3(t), let T 3s denote the transitions t in Ts such that 9Pi : s(i) 2 pre(t). In otherwords, T 3s contains all transitions (enabled or disabled) in Ts that are originating from

www.manaraa.com

58 CHAPTER 4. PERSISTENT SETSthe current local state of some process (not necessarily in P). Note that all transitionsin Ts that are enabled in s are in T 3s . Moreover, transitions that are in Ts and in T 2s arein T 3s . To prove the theorem, we show that there exists a run of Algorithm 3 such thatall enabled transitions in T 3s are in T 2s . This amounts to constructing a set T 3s such that,for all transitions t 2 T 2s , if t 2 T 3s , then all enabled transitions that are added to T 3sbecause of t by (possibly several applications of) step 2 of Algorithm 3 are in T 2s .Consider a transition t 2 T 3s that is enabled in s. Since t is in T 2s , we know active(t) �P . If t0 is added to Ts because of t by step 2.b.i of Algorithm 3, this means that t andt0 are in con
ict. Hence, there exists a process Pi active for t such that s(i) 2 pre(t0).Since Pi 2 P , t0 is in T 2s , by de�nition of T 2s . Moreover, since t0 is in both Ts and T 2s , itis also in T 3s .If t0 is added to Ts because of t by step 2.b.ii of Algorithm 3, this means that t andt0 are parallel and 9op 2 used(t); 9op0 2 used(t0) : op and op0 do-not-accord. Thus, opand op0 can-be-dependent, since the relation do-not-accord is included in the relationcan-be-dependent. Consequently, by step 2.b of Algorithm 2, the processes in active(t0)are in P . If there is a process Pi such that s(i) 2 pre(t0), t0 is in T 2s . If for all processesPi in active(t0), s(i) 62 pre(t0), t0 is disabled in s and is neither in T 2s , nor in T 3s . Let Pibe one of the processes active for t0. By applying repeatedly step 2.a.i of Algorithm 3and choosing Pi, a transition t00 in T 2s may eventually be included in set Ts. In this case,intermediate transitions t000 that are included in set Ts during these successive applicationsof step 2.a.i are all disabled in s, since they are not in T 2s (by construction), and henceprocess Pi, which is active for all these transitions, is not ready to execute any of them:s(i) 62 pre(t000). Since t00 is in both Ts and T 2s , it is also in T 3s .Consider a transition t 2 T 3s that is disabled in s. Since t is in T 2s , we know active(t) �P . Two cases are possible. If there exists a process Pi 2 active(t) such that s(i) 6=(pre(t) \ Pi), one can choose process Pi in step 2.a.i of Algorithm 3 and include alltransitions t0 such that (pre(t) \ Pi) 2 post(t0). Consider such a transition t0. If s(i) 2pre(t0), t0 is in T 2s since Pi 2 P (and also in T 3s , since t0 2 Ts). Else, t0 is disabled in s(process Pi, which is active for t0, is not ready to execute t0) and is neither in T 2s , nor inT 3s . By applying repeatedly step 2.a.i of Algorithm 3 and choosing Pi, a transition t00 inT 2s may eventually be included in set Ts. In this case, intermediate transitions t000 thatare included in set Ts during these successive applications of step 2.a.i are all disabled ins, since they are not in T 2s (by construction), and hence process Pi, which is active forall these transitions, is not ready to execute any of them: s(i) 62 pre(t000). Since t00 is inboth Ts and T 2s , it is also in T 3s .Now consider the second possible case where, for all processes Pi active for t, we haves(i) = (pre(t)\Pi). Since t is disabled in s, there exists a condition cj in the guard G oft that evaluates to false in s. Such a condition cj is chosen in step 2.a.ii of Algorithm 3,

www.manaraa.com

4.6. COMPARISON 59and all transitions t0 such that 9op0 2 used(t0) : op and op0 can-be-dependent, where opis an operation used by t to evaluate cj, are added to Ts. Consider such a transitiont0. If t and t0 are parallel, by step 2.b of Algorithm 2, all processes in active(t0) are inP . If there is a process Pj such that s(j) 2 pre(t0), t0 is in T 2s (and in T 3s). If for allprocesses Pj in active(t0), s(j) 62 pre(t0), t0 is disabled in s and is neither in T 2s , nor inT 3s . Let Pj be one of the processes active for t0. By applying repeatedly step 2.a.i ofAlgorithm 3 and choosing Pj, a transition t00 in T 2s may eventually be included in set Ts.In this case, intermediate transitions t000 that are included in set Ts during these successiveapplications of step 2.a.i are all disabled in s, since they are not in T 2s (by construction),and hence process Pj, which is active for all these transitions, is not ready to execute anyof them: s(j) 62 pre(t000). Since t00 is in both Ts and T 2s , it is also in T 3s .Finally, if t and t0 are not parallel, there exists a process Pj active for both t and t0.If s(j) 2 pre(t0), t0 is in T 2s , and then is also in T 3s . Else, by applying repeatedly step2.a.i of Algorithm 3 and choosing Pj, a transition t00 in T 2s may eventually be included inset Ts. In this case, intermediate transitions t000 that are included in set Ts during thesesuccessive applications of step 2.a.i are all disabled in s, since they are not in T 2s (byconstruction), and hence process Pj, which is active for all these transitions, is not readyto execute any of them: s(j) 62 pre(t000). Since t00 is in both Ts and T 2s , it is also in T 3s .In conclusion, we have build a set T 3s such that, for all transitions t 2 T 2s , if t 2 T 3s , thenall enabled transitions that are added to T 3s because of t by (possibly several applicationsof) step 2 of Algorithm 3 are in T 2s . Consequently, there exists an execution of Algorithm 3that returns a persistent set Algo3(t) such that Algo3(t) � Algo2(t).It follows from the two previous theorems that the smallest persistent set that can becomputed by Algorithm i can also be computed by Algorithm j with i < j, while theconverse is not true, as it has been shown with the examples in the previous Sections.So far, we have presented three di�erent algorithms, which have been developed in-dependently, and we have shown that they all compute persistent sets. Persistent setsare thus a key notion underlying these algorithms though, maybe surprisingly, noneof [Ove81, GW91b, Val91] pointed this out.It should be emphasized that persistent sets are really what we want to compute, whilethe algorithms that we have presented (including the notion of stubborn sets) rather tellus how to compute persistent sets. Making this distinction between \what" and \how" isimportant. Indeed, once one clearly knows what one wants to obtain, i.e., persistent sets,it is then possible to consider the problem of computing persistent sets from a broaderperspective. More precisely, it now makes sense to ask if there exist better algorithmsthat could compute yet smaller persistent sets than the most elaborate technique we havepresented so far, i.e., the stubborn set technique.

www.manaraa.com

60 CHAPTER 4. PERSISTENT SETSThe answer to this question is positive, and a new more re�ned algorithm to computesmaller persistent sets is introduced in the next Section. (The key contributions of thenext Section appeared in [GP93].)4.7 Algorithm 4 (Conditional Stubborn Sets)4.7.1 Basic IdeaThe only information about the current state that has been used in all the previousalgorithms for computing persistent sets is whether transitions are enabled or disabledin that state. These algorithms did not use any other information about the currentstate itself. Indeed, de�nitions like \can-be-dependent" or \do-not-accord" used by thesealgorithms were de�ned with respect to all possible states in S. Therefore, using thesede�nitions can produce unnecessarily large persistent sets.In this Section, we show how to improve the previous algorithms by using a less restric-tive approach. This approach consists in considering only the states that are reachablefrom the current state s and in taking advantage of conditional dependency.We now give a new de�nition inspired by the stubborn set de�nition 4.15 that can beused to compute smaller persistent sets. Unlike De�nition 4.15, the new de�nition takesadvantage of conditional dependency [GP93].De�nition 4.22 A set Ts of transitions is a conditional stubborn set in state s if Tscontains at least one enabled transition, and if for all transitions t 2 Ts, the followingcondition holds:for all sequences s = s1 t1! s2 t2! s3 : : : tn�1! sn tn! sn+1 of transitions from sin AG such that t and tn are dependent in sn, at least one of the t1; : : : ; tn isalso in Ts.Like De�nition 4.15, De�nition 4.22 de�nes sets Ts containing transitions that can beeither enabled or disabled in s. However, the new de�nition does not consider all statesin S, but only successor states of s in AG. Moreover, it does not distinguish enabledfrom disabled transitions: it requires the same condition for all transitions in Ts. Finally,note that this de�nition is general, abstract, in the sense that it is independent of anyparticular model.Let T be the set of all transitions in a conditional stubborn set Ts that are enabled ins. By de�nition of Ts, T is nonempty. We now prove that T is a persistent set in s.

www.manaraa.com

4.7. ALGORITHM 4 (CONDITIONAL STUBBORN SETS) 61Theorem 4.23 Let T be the set of all transitions in a conditional stubborn set Ts instate s that are enabled in s. Then, T is a persistent set in s.Proof:The proof is by contradiction. Suppose that T is not persistent in s. Then, byDe�nition 4.1, there exists in AG a sequence s = s1 t1! s2 t2! s3 : : : tn�1! sn tn! sn+1 oftransitions t1; t2; : : : ; tn 62 T , such that tn is dependent in sn with some transition t 2 T .Let us show that such a sequence cannot exist.Since t 2 T , t 2 Ts and t is enabled in s. Hence, by applying the de�nition of aconditional stubborn set to t with the sequence s = s1 t1! s2 t2! s3 : : : tn�1! sn tn! sn+1given above, at least one of the t1; : : : ; tn is also in Ts. Let ti be this transition: ti 2 Ts. Ifti is enabled in s, then ti 2 T , which contradicts the assumption that t1; : : : ; tn 62 T . Thus,ti is disabled in s. Since ti is enabled in si, by applying the de�nition of a conditionalstubborn set to ti 2 Ts with the sequence s = s1 t1! s2 t2! s3 : : : ti�1! si, at least one ofthe transitions t1; : : : ; ti�1 is also in Ts. Let tj, j < i, be this transition: tj 2 Ts. Again,if tj is enabled in s, then tj 2 T , which contradicts the assumption that t1; : : : ; tn 62 T .Thus, tj is disabled in s. By repeating the same reasoning, one comes to the conclusionthat t1 is in Ts. Since t1 is enabled in s, this means that t1 2 T , which contradicts theassumption that t1; : : : ; tn 62 T .It is worth noticing that the converse also holds: for a given state s, every persistentset in s is the set of enabled transitions in a conditional stubborn set in s.Theorem 4.24 Let T be a nonempty persistent set in s. Then, there exists a conditionalstubborn set Ts in s such that T is the set of all the transitions that are enabled in Ts.Proof:Simply take Ts = T . Since T is persistent in s, we know from De�nition 4.1 that forall transitions t 62 T such that there exists in AG a sequence s = s1 t1! s2 t2! s3 : : : tn�1!sn tn=t! sn+1 leading from s to t and including only transitions ti 62 T , t is independentin sn with all transitions in T . Thus, according to De�nition 4.22, no other transitionneeds be added in Ts, and T itself is a conditional stubborn set.Consequently, all persistent sets can be obtained by computing conditional stubbornsets.It can also be proved that all stubborn sets are conditional stubborn sets, while theconverse does not hold.Theorem 4.25 Let Ts be a stubborn set in state s. Then, Ts is also a conditionalstubborn set in s.

www.manaraa.com

62 CHAPTER 4. PERSISTENT SETSProof:Consider a transition t 2 Ts that is disabled in s. The �rst transitions tn that aredependent with t in some state sn reachable from s in AG are transitions such thatsn tn! sn+1, t is disabled in sn and t is enabled in sn+1. By De�nition 4.14, for allsequences w of transitions from s to such a state sn, w contains at least one transitionin each set NES(t; s). Since all transitions in one set NES(t; s) are in TS by point 1 ofDe�nition 4.15, all transitions in Ts that are disabled in s satisfy the condition given inDe�nition 4.22.Consider a transition t 2 Ts that is enabled in s. In all states sn reachable froms in AG where the �rst transitions tn that are dependent with t are enabled, t is alsoenabled. Since t and tn are simultaneously enabled in sn and are dependent in sn,they do-not-accord with each other, and all such transitions tn are in Ts by point 2 ofDe�nition 4.15. Hence, all transitions in Ts that are enabled in s satisfy the conditiongiven in De�nition 4.22.4.7.2 AlgorithmIn other words, De�nition 4.22 is �ner than De�nition 4.15 and can be used to producesmaller persistent sets, and actually, all persistent sets in s.This is a strong, though purely theoretical, result. Indeed, it is not obvious how todevelop a practical algorithm that would be able to take advantage of De�nition 4.22,since this de�nition uses information about sequences of transitions in the state spaceAG, about which no assumption can be made.Nevertheless, this more general de�nition can be pro�tably used to justify the cor-rectness of a new relation which models more �nely the possible interactions betweenoperations on a given object. More precisely, our idea is to de�ne a relation betweenoperations on a given object that would tell us for each operation op used by a transitionin Ts which other operations op0 \might be the �rst to interfere with op from the currentstate s", and thus which other transitions should be added to Ts as well. The relation\might be the �rst to interfere with op from the current state s" is represented by therelation >s, which is formally de�ned as follows.De�nition 4.26 Let op and op0 be two operations on the same object O and s be areachable state. The relation op >s op0 holds if there exists a sequence s = s1 t1! s2 t2!s3 : : : tn�1! sn tn! sn+1 of transitions from s in AG such that 81 � i < n : 8op00 on O usedby ti: op and op00 are independent in state si, tn uses op0, and op and op0 are dependentin sn.

www.manaraa.com

4.7. ALGORITHM 4 (CONDITIONAL STUBBORN SETS) 63The di�erence between the relation >s and the relations \can-be-dependent" (De�ni-tion 4.6) and \do-not-accord" (De�nition 4.13) is that dependencies between transitionsare only considered in successor states of s in AG, not for all states in S, and that only the�rst dependent operations that may occur from s are considered, instead of all dependentoperations.The relation >s is included in the relation \can-be-dependent" (De�nition 4.6): twooperations op and op0 that satisfy the condition given in the de�nition of >s satisfy thecondition given in the de�nition of relation \can-be-dependent", while the converse doesnot hold, since all paths from the current state s to states where op and op0 are dependentmay contain a transition from some intermediate state s0 that uses an operation op00dependent with op in s0.The relation >s is also included in the relation \do-not-accord" (De�nition 4.13).Indeed, if op and op0 satisfy the condition given in the de�nition of >s, then there existsa sequence s = s1 t1! s2 t2! s3 : : : tn�1! sn tn! sn+1 of transitions from s in AG such that81 � i < n : 8op00 on O used by ti: op and op00 are independent in state si, tn uses op0, andop and op0 are dependent in sn. Therefore, op remains de�ned in all states si, 1 � i � n,and since op and op0 are dependent in sn and both de�ned in sn, they do-not-accord. Theconverse is not true, since all paths from the current state s to states where op and op0are both de�ned and dependent may contain a transition from some intermediate states0 that uses an operation op00 dependent with op in s0.This proves that the relation >s models the possible interactions between operationson a given object more �nely than the relations \can-be-dependent" and \do-not-accord".Moreover, it can be proved that this relation can pro�tably replace the two latterrelations in all the previous algorithms for computing persistent sets, i.e., Algorithms 1,2 and 3, while still producing persistent sets. Here, we will only prove this result forAlgorithm 3, the most elaborate algorithm considered so far, in order to clearly establishthat the new technique extends previous work. (The extension of Algorithm 1 and 2 canbe done in a similar way.)Assume that a >s relation is given for all operations that can be performed on sharedobjects. (We will discuss later how to provide >s in practice.) Then, consider Algo-rithm 3 again, and replace the relations \can-be-dependent" and \do-not-accord" by >s.We obtain Algorithm 4, presented in Figure 4.5. Note that >s is used in both steps 2.aand 2.b.We �rst prove that Algorithm 4 returns persistent sets in s. For doing this, by Theo-rem 4.23, it is su�cient to show that the sets Ts that it computes are conditional stubbornsets in s.

www.manaraa.com

64 CHAPTER 4. PERSISTENT SETS
1. Take one transition t that is enabled in s. Let Ts = ftg.2. For all transitions t in Ts:(a) if t is disabled in s, either:i. choose a process Pj 2 active(t) such that s(j) 6= (pre(t) \ Pj); then, add to Tsall transitions t0 such that (pre(t) \ Pj) 2 post(t0).ii. choose a condition cj in the guard G of t that evaluates to false in s; then,for all operations op used by t to evaluate cj, add to Ts all transitions t0 suchthat 9op0 2 used(t0) : op >s op0.(b) if t is enabled in s, add to Ts all transitions t0 such thati. t and t0 are in con
ict; orii. t and t0 are parallel and 9op 2 used(t); 9op0 2 used(t0) : op >s op0.3. Repeat step 2 until no more transitions can be added. Then, return all transitionsin Ts that are enabled in s (transitions in Ts that are disabled in s are discarded).Figure 4.5: Algorithm 4Theorem 4.27 All sets Ts that are computed by Algorithm 4 are conditional stubbornsets in s.Proof:Let Ts be a set of transitions that is computed by Algorithm 4. Let us show that Tsis a conditional stubborn set in s.Consider a transition t 2 Ts that is disabled in s. The �rst transitions tn that aredependent with t in some state sn reachable from s in AG by a sequence w of transitionsare transitions such that sn tn! sn+1, t is disabled in sn, and t is enabled in sn+1. Considersuch a sequence w of transitions from s in AG: s = s1 t1! s2 t2! s3 : : : tn�1! sn tn! sn+1. Twocases are possible in step 2.a: either a process Pi 2 active(t) such that s(i) 6= (pre(t)\Pi)is chosen, or a condition ci in the guard G of transition t that evaluates to false in s ischosen by Algorithm 4. In the �rst case, since t is enabled in sn+1, sn+1(i) = (pre(t)\Pi),and thus there exists a transition tj, 1 � j � n, such that (pre(t)\Pk) 2 post(tj), whichis hence included in set Ts by step 2.a.i. of Algorithm 4. In the second case, there existsa transition tj, 1 � j � n, such that tj changes the value of ci from false to true bymodifying the output returned by an operation op used to evaluate ci, i.e., by performingan operation dependent with op in sj. If there are several such transitions, let tj be the�rst transition in w that uses an operation op0 dependent with op in sj. By de�nition of

www.manaraa.com

4.7. ALGORITHM 4 (CONDITIONAL STUBBORN SETS) 65>s, we have op >s op0, and thus tj is in Ts by step 2.a.ii. This proves that all disabledtransitions in Ts satisfy point 1 of De�nition 4.22.Consider a transition t 2 Ts that is enabled in s. In all states sn reachable from s inAG by a sequence w of transitions where the �rst transitions tn that are dependent witht are enabled, t is also enabled. Consider such a sequence w of transitions from s in AG:s = s1 t1! s2 t2! s3 : : : tn�1! sn tn! sn+1. We thus have that t and tn are enabled in sn andare dependent in sn. If t and t0 are not parallel, this implies by De�nition 4.5 that atleast one process is active for both transitions t and tn: Pi 2 (active(t) \ active(tn)). Ift and tn are in con
ict, tn is added to Ts by step 2.b.i. If t and tn are not in con
ict,we know that (pre(t) \ pre(tn)) = ;. Therefore, (pre(t) \ Pi) 6= (pre(tn) \ Pi), and itis impossible for t and tn to be simultaneously enabled (process Pi cannot be in twodi�erent local states (pre(t)\Pi) and (pre(t0)\Pi) at the same time), which contradictsthe assumption that t and tn are both enabled in sn.Assume now that t and t0 are parallel. We know from De�nition 3.21 that a su�cientsyntactic condition for two transitions t and tn to be independent in a state sn is that theyare parallel and 8op1 2 used(t) and 8op2 2 used(tn), if op1 and op2 are two operationson a same object, then op1 and op2 are independent in sn. Since t and tn are dependentin s0, this implies that 9op 2 used(t); 9op0 2 used(tn) : op and op0 are dependent in s0.Let tj, 1 � j � n be the �rst transition in w that uses an operation op00 dependent (insj) with the operation op used by t. By de�nition of >s, we have op >s op00. Hence, bystep 2.b.ii of Algorithm 4, tj is included in Ts. This proves that all enabled transitionsin Ts satisfy point 2 of De�nition 4.22.For a given state s, let Algoi(t) denote a persistent set that is returned by Algorithm i,with i 2 f3; 4g, when t is the enabled transition chosen in step 1 of the algorithm. Let usnow compare the possible persistent sets that can be computed by Algorithm 3 and 4.Theorem 4.28 For all transitions t that are enabled in a state s, for all persistent setsAlgo3(t) that can be returned by Algorithm 3, there exists an execution of Algorithm 4that returns a persistent set Algo4(t) such that Algo4(t) � Algo3(t).Proof:Immediate by the de�nition of >s, since relation >s is included in both relations\can-be-dependent" and \do-not-accord". Indeed, since the only di�erence between Al-gorithm 3 and 4 is the replacement of the relations \can-be-dependent" and \do-not-accord" by a �ner relation >s, the set Ts constructed by Algorithm 4 is always a subset(not necessarily proper) of the set Ts constructed by Algorithm 3, provided that the samechoices are made in case of nondeterminism.To use Algorithm 4 in practice, we �nally have to determine for each type of shared

www.manaraa.com

66 CHAPTER 4. PERSISTENT SETSobject what the relation >s is for each pair (op; op0) of possible operations on this object.Like all the other relations on operations we have de�ned so far (dependency, \can-be-dependent", \do-not-accord"), >s can only be approximated in practice, by usingsu�cient conditions that ensure that \enough" operations are considered. In other words,we have by default op >sop0 unless it can be proved that it is impossible to have a sequenceof transitions in AG satisfying De�nition 4.26. (Note that the relation >s can alwaysbe approximated by using a relation \can-be-dependent" or \do-not-accord", since thesetwo relations include relation >s.)Example 4.29 The following table represents a possible relation >s for the boundedFIFO channel of size N considered in Example 3.20. For two operations op and op0 ona same channel, if the condition given in row op and column op0 in the table is true in astate s, then we have op >s op0, while \{" denotes the fact that op 6>sop0.>s Send Receive Length Empty FullSend n < N n = N n < N n < N n = N � 1Receive n = 0 n > 0 n > 0 n = 1 n > 0Length n < N n > 0 { { {Empty n = 0 n > 0 { { {Full n < N n = N { { {For instance, let us show how to determine when Send >s Receive. One has to determinewhen it is impossible to �nd a sequence s = s1 t1! s2 t2! s3 : : : tm�1! sm tm! sm+1 oftransitions from s in AG such that the Send and Receive operations are dependent insm, and 81 � i < m : 8op00 used by ti: Send and op00 are independent in state si. SinceSend and Receive are dependent in sm, we obtain from the conditional dependencyrelation between Send and Receive (see the table given in Example 3.20) that eithern = 0 or n = N in sm. If n = 0 in sm, the Receive operation is not de�ned in sm andthere cannot be a transition tm executing a Receive operation such that sm tm! sm+1. Ifn = N in sm, the Receive operation is de�ned. If n < N in s, and since n = N in sm, atleast one transition ti, 1 � i < m, in the sequence from s to sm executes an operation thatchanges the value of n from n < N to N . This operation can only be a Send operationand is performed from state si where n < N . Therefore, we obtain from the conditionaldependency relation between Send and Send when n < N that the two Send operationsare dependent in si. It is thus impossible to �nd a sequence satisfying De�nition 4.26when n < N in s. One concludes that Send >s Receive only when n = N in s.Note that it would not have been possible to obtain such a proof without using conditionaldependency and conditional stubborn sets. Also note that relation >s is not necessarilysymmetric.

www.manaraa.com

4.8. DISCUSSION 67Example 4.30 Consider a system containing two processes A = fa0; a1g and B =fb0; b1; b2; b3g, an object of type \bounded FIFO channel" of size N = 5, denoted q,as considered in Examples 3.20 and 4.29, an object x of type \boolean variable", and �vetransitions t1 = (a0; true; Receive(q); a1), t3 = (b0; true; x := 1; b1),t2 = (a1; true; x := 0; a0), t4 = (b1; Empty(q); skip; b2),t5 = (b1; Not(Empty(q)); skip; b3),where it is assumed that Receive(q) denotes a command that performs a Receive op-eration on the object q (the output of the Receive operation on q is discarded here),Empty(q) denotes a boolean condition equivalent to the value returned by the executionof an Empty operation on object q, and skip denotes some internal (purely local) compu-tation. Consider the state s = (a0; b0; (m1; m2; m3); 0) 2 A�B � Vq � Vx (q contains thesequence of three messages m1m2m3). In state s, both transitions t1 and t3 are enabled.As an exercice, the reader can compute what the persistent sets that can be returned byAlgorithms 1, 2 and 3 are. Actually, Algo1(t1) = Algo1(t3) = Algo2(t1) = Algo2(t3) =Algo3(t1) = Algo3(t3) = ft1; t3g. In other words, neither Algorithm 1, nor Algorithm 2,nor Algorithm 3 is able to return a nontrivial persistent set for this example. Let usinvestigate how Algorithm 4, in contrast, is able to determine that ft1g is a persistentset in s. Starting with t1 as the initial enabled transition taken in step 1, Algorithm 4has to include in set Ts transitions that satisfy either point 2.b.i or point 2.b.ii. Sinceno transition is in con
ict with t1, no transition is included by step 2.b.i. Since theonly operation used by t1 is a Receive operation on q, and since n = 3 in s (there arethree messages in q), the relation >s for q given in Example 4.29 tells us to include bypoint 2.b.ii all transitions that use either a Receive, a Length, or a Full operation onq. Since there is no such transition other than t1 itself, no other transition is includedin Ts. (Note that Algorithm 3 would have included transition t4 and t5 by step 2.b.ii ofAlgorithm 3, since a Receive operation and an Empty operation do-not-accord with eachother (when n = 1, they are both de�ned and are dependent).) Hence, Algo4(t1) = ft1g,and a persistent-set selective search using Algorithm 4 may only execute transition t1from state s.4.8 DiscussionFour algorithms for computing persistent sets have been presented. These algorithmsfollow the same general algorithmic idea: they start by taking an enabled transition andthen compute a persistent set from this transition by adding repeatedly all transitionsthat might interfere with it. They can all be viewed as approximations of conditional

www.manaraa.com

68 CHAPTER 4. PERSISTENT SETSstubborn sets (cf. De�nition 4.22) introduced in the previous Section. Note that otheralgorithms approximating De�nition 4.22 are also possible.We showed that� Algo1(t) � Algo2(t);� 9Algo3(t) : Algo2(t) � Algo3(t); and� 8Algo3(t); 9Algo4(t) : Algo3(t) � Algo4(t):For the �rst three algorithms, we also showed that the worst-case time complexity tocompute Algo1(t), Algo2(t), and Algo3(t) are, respectively, O(jenabled(s)j2), O(jPj2),and O(jT j2). Clearly, the more information about the system description the algorithmuses and can exploit, the more sophisticated the algorithm is, the smaller the persistentset that it returns can be, but the larger the run-time is.There is an exception to this rule: the worst-case time complexity to compute Algo4(t)is the same as the one of Algo3(t). Indeed, the only di�erence between Algorithm 3 andAlgorithm 4 is that Algorithm 4 takes advantage of the relation >s, which models more�nely the possible interactions between operations on shared objects. In other words,Algorithm 4 improves Algorithm 3 without any run-time overhead. Actually, the relations\can-be-dependent" and \do-not-accord" should be replaced by the relation >s in all thealgorithms presented in this Chapter, i.e., Algorithms 1, 2 and 3: this is a no-risk andfree improvement.Of course, a relation >s has to be provided for each type of shared objects. But, inpractice, interactions between operations on shared objects have to be described some-how anyway. We have showed that the relation >s gives the most general existingframework for modeling interactions between operations, extending the relations \can-be-dependent" and \do-not-accord". In practice, it is worth de�ning >s as �nely aspossible, in order to improve the e�ectiveness of the algorithms described in this Chap-ter. Note that this has to be done only once for each type of shared object.Therefore, we advocate the use of object libraries where classic high-level communi-cation objects (such as various de�nitions of communication channels, shared variables,semaphores, etc), operations on these objects, the dependency and >s relations are de-�ned as carefully as possible once for all. One can then specify concurrent systems byusing these object libraries and thus gain from the re�ned dependencies during veri�-cation which is still fully automatic. In contrast, we discourage the opposite approachconsisting of de�ning only one type \shared variable", which can be used to represent anyshared object, or even worst, the approach consisting in de�ning \everything", includingobjects, by processes (for instance, a transmission medium can be modeled by a process

www.manaraa.com

4.8. DISCUSSION 69that transmits messages). Note that this recommendation is quite natural. Indeed, whenusing such specialized objects, one indirectly provides more information to the veri�ca-tion tool about the structure of the state space of the system being analyzed. If thetool is clever enough to be able to use this information (as is the case with a \partial-order" veri�cation tool), it is not surprising that the veri�cation can be performed moree�ciently and becomes applicable to larger systems.Another question is: which algorithm among Algorithms 1, 2, and 3 should be usedin conjunction with a relation >s? It is di�cult to answer this question.Indeed, on one hand, it is easy to see that if a persistent set T in a state s is a subsetof another persistent set T 0 in s, then the reduced state-space AR obtained by choosingT in state s is smaller than the reduced state-space A0R obtained by choosing T 0 in states (provided that the same rule is applied in all other visited states of AR). Therefore, Tshould be prefered to T 0.However, on the other hand, if a persistent set T in a state s contains less transitionsthan another persistent set T 0 in s, but is not a subset of T 0, then choosing T instead ofT 0 is just a heuristics: the reduced state-space AR obtained by choosing T in s will notnecessarily be smaller than the reduced state-space A0R obtained by choosing T 0 in s.This implies that there is no \best" algorithm for computing persistent sets. Indeed,min(PSj), the smallest persistent set that can be computed by Algorithm j, is not nec-essarily included in min(PSi), i < j. Computing as small persistent sets as possible isonly a heuristics. Moreover, computing smaller persistent sets can only be done at an ad-ditional run-time expense, and using a more elaborate algorithm does not systematicallyyield smaller persistent sets: an elaborate algorithm may return the same persistent setas a simple algorithm, it then requires more time to produce the same result.Therefore, in practice, the choice of a persistent-set algorithm is a trade-o� betweenthe complexity of the algorithm, its additional run-time expense, and the reduction itcan yield. This choice also depends on the model used to represent concurrent systems(some information is hard to extract from some models), and on the type of systems thathave to be analyzed (some optimizations are useless for some classes of examples).Note 4.31 In [Val91], it is pointed out that all transitions that can disable an enabledtransition in a stubborn set Ts need not systematically be included in Ts, if at leastone enabled transition in Ts is independent with all transitions not in Ts. From thisobservation, Valmari introduced another variant of stubborn sets, called \weak stubbornsets" [Val91]. Note that, following the idea of Valmari, \weak" versions of our notions ofpersistent set and of conditional stubborn set can easily be de�ned.

www.manaraa.com

70 CHAPTER 4. PERSISTENT SETSNote 4.32 A de�nition very similar to our de�nition of persistent set appeared (inde-pendently) in [KP92b]. This de�nition is the following.Let s be a state. A faithful decomposition in s is a subset of transitions Ts � Tsuch that each transition in T n Ts is either independent of each transitionin Ts or is disabled in s and its successors as long as no operation of Ts isexecuted.It is easy to see that the set of all enabled transitions in a faithful decomposition Ts in sis persistent in s.

www.manaraa.com

Chapter 5Sleep Sets
5.1 Basic IdeaThe second technique for computing the set of transitions T to consider in a selectivesearch is the sleep set technique [GW93] introduced in [God90]. This technique does notexploit information about the static structure (code) of the program, as persistent-setalgorithms do, but rather information about the past of the search. Used in conjunc-tion with a persistent-set technique, sleep sets can further reduce the number of statesexplored. Indeed, when the persistent-set technique cannot avoid the selection of inde-pendent transitions in a state, sleep sets can avoid the wasteful exploration of multipleinterleavings of these transitions.Example 5.1 Consider a system containing two processes A = fa0; a1; a2g and B =fb0; b1; b2g, two objects x and y of type \boolean variable", and four transitionst1 = (a0; true; x := 0; a1), t3 = (b0; true; y := 1; b1),t2 = (a1; true; y := 0; a2), t4 = (b1; true; x := 1; b2).Consider the state s = (a0; b0; 0; 0) 2 A � B � Vx � Vy. In state s, both transitions t1and t3 are enabled. The global state space AG corresponding to this system is shownin Figure 5.1. It is easy to see that the only persistent set in s is the set ft1; t3g of allenabled transitions. Therefore, every persistent-set selective search, whatever algorithmit uses to compute persistent sets, has to execute both transitions t1 and t3 from state s.Note that transitions t1 and t3 are independent in s.Let us consider an example to illustrate the basic idea behind sleep sets. Consideragain the system of Example 5.1. In state s, two enabled independent transitions t171

www.manaraa.com

72 CHAPTER 5. SLEEP SETS
(a0; b0; 0; 0)

(a1; b0; 0; 0) (a0; b1; 0; 1)
(a1; b1; 0; 1)(a2; b0; 0; 0) (a0; b2; 1; 1)

t3
t3
t1

t1t2
s1

s
s3

t4
Figure 5.1: Global state space for the system of Example 5.1and t3 are selected to be explored from s. After exploring t1, t3 is still enabled sincet1 and t3 are independent in s, and t3 could thus be selected to be explored from thestate s1 reached after executing t1 from s. Conversely, after exploring t3, t1 will, for thesame reason, also still be enabled and could also be selected to be explored from thestate s3 reached after executing t3 from s. When selecting two independent transitionst1 and t3 from s, there is thus a risk that the two interleavings of t1 and t3, i.e., the twosequences t1t3 and t3t1, will be explored. This is potentially wasteful since both of theseinterleavings lead to the same state. In order to prevent this situation from occurring,the sleep set method prevents the exploration of t1 in s3: t1 is introduced in the \sleepset associated with s3".More precisely, a sleep set is a set of transitions. A sleep set is associated with eachstate s reached during the search. The sleep set associated with a state s is a set oftransitions that are enabled in s but will not be executed from s. The sleep set associatedwith the initial state s0 is the empty set. The sleep sets of the successors of a state s arethen computed as follows.Let T be the set of transitions that have been selected to be explored from s, andlet s:Sleep denote the sleep set associated with s. Take a �rst transition t1 out of T .The sleep set associated with the state reached after executing t1 from s is the sleepset associated with s unmodi�ed except for the elimination of the transitions that are

www.manaraa.com

5.2. ALGORITHM 73
1 Initialize:Stack is empty; H is empty;2 s0:Sleep = ;;3 push (s0) onto Stack;4 Loop: while Stack 6= ; do f5 pop (s) from Stack;6 if s is NOT already in H then f7 enter s in H;8 T = Persistent Set(s) n s:Sleep9 g10 else f11 T = ft j t 2 H(s):Sleep^ t 62 s:Sleepg;12 s:Sleep = s:Sleep\H(s):Sleep;13 H(s):Sleep = s:Sleep14 g15 for all t in T do f16 s0 = succ(s) after t; /* t is executed */17 s0:Sleep = ft0 2 s:Sleep j (t; t0) are independent in s g;18 push (s0) onto Stack;19 s:Sleep = s:Sleep [ftg20 g21 g
Figure 5.2: Selective search using persistent sets and sleep setsdependent with t1 in s. (Equivalently, only the transitions of the sleep set associatedwith s that are independent with t1 in s are passed to the sleep set associated with thestate reached after executing t1 from s.) Let t2 be a second transition taken out of T .The sleep set associated with the state reached after executing t2 from s is the sleep setassociated with s augmented with t1, minus all transitions that are dependent with t2in s. One proceeds in a similar way with the remaining transitions of T . The generalrule is thus that the sleep set associated with a state s0 reached by a transition t from astate s is the sleep set that was obtained when reaching s augmented with all transitionsalready taken from T , and purged of all transitions that are dependent with t in s.5.2 AlgorithmThe algorithm of Figure 5.2 represents a persistent-set selective search augmented withall operations required to manipulate sleep sets. It uses a Stack and a hash table H to

www.manaraa.com

74 CHAPTER 5. SLEEP SETSstore visited states and their associated sleep set. Each time a new state s is encounteredduring the search (line 6), it is stored in the hash table H, with its associated sleep sets:Sleep (line 7). Then, a call to the function Persistent Set is performed (line 8). Thisfunction returns a persistent set T in s that is nonempty if there exist transitions enabledin s. Transitions that are in the current sleep set s:Sleep need not be explored, and arethus removed from set T (line 8).If the current state s has already been visited (line 10), let H(s):Sleep denote thesleep set that has been stored with s in H. If H(s):Sleep contains transitions that arenot in the current sleep set s:Sleep associated with s, these transitions are selected to beexplored (line 11) with a new sleep set equals to s:Sleep \ H(s):Sleep (lines 12). Thisnew sleep set associated with s is stored with s in the hash table H (line 13). Hence, thevalue of H(s):Sleep may shrink as the search proceeds, since transitions can be removedfrom it at a later visit. (Note that H(s):Sleep never grows.)All transitions selected to be explored, i.e., in set T , are explored (line 15{16), andthe sleep set that is to be associated with each successor state of s is computed (line 17{19) following the procedure described above (s:Sleep is used in line 19 as a temporaryvariable to store all transitions already taken from T during this computation).The correctness proof of the algorithm is the following. Let AR be the reduced state-space explored by the algorithm of Figure 5.2. We now prove that all deadlocks in AGare in AR.Theorem 5.2 Let s be a state in AR, and let d be a deadlock reachable from s in AG bya sequence w of transitions. For all wi 2 [w]s, let ti denote the �rst transition of wi. LetH(s):Sleep denote the sleep set stored with s in H when the search is completed. If forall ti, ti is not in H(s):Sleep, then d is reachable from s in AR.Proof:The proof proceeds by induction on the length of w. For jwj = 0, the result isimmediate. Now, assume the theorem holds for paths (sequences of transitions) of lengthn � 0 and let us prove that it holds for a path w of length n + 1.We �rst prove that at least one of the transitions ti has been executed from s in AR.If some of the ti have been in H(s):Sleep at some moment during the search, they havebeen removed from H(s):Sleep at a later visit of s, since none of the ti are in H(s):Sleepwhen the search is completed; since transitions that are removed from H(s):Sleep areexecuted, there is at least one of the transitions ti that has been executed from s in AR.If none of the ti were ever in H(s):Sleep, this means that none of them were in the sleepset s:Sleep associated with s the very �rst time it has been visited (since H(s):Sleep canonly shrink between successive visits of s). During this �rst visit, a call to the function

www.manaraa.com

5.2. ALGORITHM 75Persistent Set was performed and, from Lemma 4.2, we know that at least one of the tiwas in the persistent set in s that was returned. Since this transition was not in s:Sleep,it has been executed from s in AR.Now, consider the last visit of s where some of the ti have been executed from s (wehave just proved such a visit exists). Let t1 denote the �rst transition ti that has beenexplored during this visit. From this visit of s until the end of the search, H(s):Sleepdid not contain any transition ti, since we assumed that H(s):Sleep does not containany transition ti at the end of the search, and since none of the ti are executed from safter this last visit. Let s:Sleep denote the sleep set associated with s just before theexecution of t1 from s. At this moment, s:Sleep does not contain any transition ti.Let s0 be the state reached after executing t1 from s. We have w1 = t1w0. ByTheorem 3.10, since w leads to d in n + 1 steps, w1 also leads to d, in n + 1 steps.Consequently, w0 leads to d from s0, and is of length n. Let us show that, for allw0i 2 [w0]s0,the �rst transition t0i of w0i is not in H(s0):Sleep.Assume the opposite, i.e., there exists some transition t0i 2 H(s0):Sleep at the end ofthe search. Hence, t0i has always been in H(s0):Sleep. Consequently, t0i was in the sleepset s0:Sleep associated with s0 when s0 was explored from s by t1. This implies that t0iand t1 are independent in s, else t0i would not have been passed on to s0:Sleep. Since theyare independent in s, t0i is enabled in s and is the �rst transition of a path wi leadingfrom s to d. Given that t0i is in s0:Sleep, either t0i was in s:Sleep, or t0i was added afterbeing executed from s. The �rst possibility is in contradiction with the fact that t0i isalso the �rst transition of some wi 2 [w]s leading to d from s and thus is not in s:Sleep.The second possibility is incompatible with the fact that t1, not t0i, is the �rst transitionamong the ti to be executed from s.The inductive hypothesis can thus be used with w0 from s0 to establish that d is visitedfrom s0 and hence from s.By applying Theorem 5.2 to the initial state s0, we directly reach the conclusionthat the algorithm of Figure 5.2 indeed reaches all deadlock states, since the sleep setassociated to the initial state is the empty set.The algorithm of Figure 5.2 stores in randomly accessed memory one sleep setH(s):Sleepwith each state encountered during the search. The size of H(s):Sleep is bounded by thenumber of transitions that are enabled in s. Sleep sets s:Sleep associated with states thatare in the Stack can be stored with these states in a sequentially accessed memory. Theoverhead in randomly accessed memory due to the use of sleep sets in a persistent-setselective search is thus O(jSRjjEnabledj) where jSRj denotes the number of states in ARand jEnabledj is the average number of transitions that are enabled in a state.Concerning time complexity, each transition in AR is explored exactly once. Each time

www.manaraa.com

76 CHAPTER 5. SLEEP SETSa transition t from a state s to a state s0 is executed during the search, a sleep set s0:Sleepis computed from s:Sleep and the transitions already taken from s. This can be done intime O(jenabled(s)j) (assuming that it takes O(1) time to check whether two transitionsare independent or not in a given state). One also has to check whether s0 is already inH: let us assume that this operation takes O(1) time (i.e., that the number of collisionsis bounded). When s0 has already been visited, s0:Sleep is compared to H(s0):Sleep:this can be done in O(jenabled(s0)j). Overall, the overhead in run time due to themanipulation of sleep sets in a persistent-set selective search is thus O(j�RjjEnabledj)where j�Rj is the number of transitions in AR and jEnabledj is the average number oftransitions that are enabled in a state.Note 5.3 Obviously, the set T = Persistent Set(s)n s:Sleep of transitions selected to beexecuted from a state s is, in general, not a persistent set in s. For instance, considerstate s3 in Example 5.1. The sleep set s3:Sleep associated to state s3 will be ft1g. Sincethe only persistent set in s3 is the set ft1; t4g, the set T of transitions executed from s3by Algorithm 5.2 will be ft4g, which is not persistent in s. This illustrates the fact thatsleep sets enable one to go beyond persistent sets in computing the transitions that needto be explored in a selective search.5.3 Properties of Sleep Sets5.3.1 On Combining Sleep Sets with Persistent SetsWe showed that the notion of sleep set is orthogonal to the notion of persistent set. Wealso showed how sleep sets and persistent sets can be combined. In this Section, wefurther discuss this combination.Consider the case where sleep sets are used alone with a classical search, i.e., withoutbeing combined with a persistent-set algorithm. This is equivalent to assume that, ineach state s that is visited during the search performed by the algorithm of Figure 5.2,the function Persistent Set returns the set of all enabled transitions in s. (Since thisset is trivially persistent in s, this case is actually a particular case of the general caseconsidered in the previous Section.) Then, we can show that all states in AG are visitedby such a search: all states in AG are in AR, where AR is the reduced state-space exploredby such an algorithm.The proof is based on the following Theorem.

www.manaraa.com

5.3. PROPERTIES OF SLEEP SETS 77Theorem 5.4 Let AR be the reduced state-space explored by the algorithm of Figure 5.2when the function Persistent Set always returns the set of all enabled transitions. Let s bea state in AR, and let x be a state reachable from s in AG by a sequence w of transitions.For all wi 2 [w]s, let ti denote the �rst transition of wi. Let H(s):Sleep denote the sleepset stored with s in H when the search is completed. If for all ti, ti is not in H(s):Sleep,then x is reachable from s in AR.Proof:The proof is similar to the proof of Theorem 5.2. The only di�erence is that, insteadof invoking Lemma 4.2, in the second paragraph of the proof, to deduce that at leastone of the ti leading to the deadlock d is in the set of transitions that is returned byPersistent Set, the fact that here at least one of the ti leading to x has been executedfrom s is straightforward, since all transitions not in s:Sleep are systematically executedfrom s, including all transitions ti.By applying Theorem 5.4 to the initial state s0, we directly reach the conclusion thatthe sleep-set algorithm used without being combined with a persistent-set algorithm visitsall reachable states, since the sleep set associated to the initial state is the empty set. Inother words, sleep sets used alone cannot reduce the number of states in AR. However,they can reduce the number of transitions in AR, which can still be very useful (seeChapter 8).Let us consider another particular case. Assume that, during the search performed bythe algorithm of Figure 5.2, the function Persistent Set never returns enabled transitionsthat are independent. In other words, the function Persistent Set called in any state salways returns a set T of transitions enabled in s such that, for all t and t0 in T , t andt0 are dependent in s. In this case, it is easy to see that all sleep sets will always beempty: from the initial state, whose associated sleep set is empty, no transition will everbe introduced in a sleep set, for all successor states. Therefore, the impact of sleep setswill be void, and sleep sets will not yield any reduction in both the number of states andtransitions that are explored.Note that, roughly speaking, using sleep sets with a \perfectly bad" persistent-setalgorithm is similar to the �rst case mentioned above, while using sleep sets with a\perfectly good" persistent-set algorithm might be equivalent to the second case above.In practice, however, persistent-set algorithms are rarely perfectly good or bad in allstates, and these two extreme cases rarely occur. Therefore, sleep sets can very oftenfurther reduce both the number of states and transitions that need to be explored forveri�cation purposes (see Chapter 8).

www.manaraa.com

78 CHAPTER 5. SLEEP SETS

t4 t4 t4t3 t3 t3

t2t2t2 t1t1t1
ft2gft2g ft1gft1g

fgfgfg fg fg

Figure 5.3: Reduced state space with sleep sets5.3.2 Reducing State MatchingsA nice property of sleep sets is that they can strongly decrease the number of statematchings that occur during the search [GHP92]. A state matching occurs each timean already visited state is visited again later during the search. The reduction of statematchings due to sleep sets can be illustrated by the following example.Example 5.5 Consider a system containing two processes A = fa0; a1; a2g and B =fb0; b1; b2g, two objects x and y of type \boolean variable", and four transitionst1 = (a0; true; x := 1; a1), t3 = (b0; true; y := 1; b1),t2 = (a1; true; x := 0; a2), t4 = (b1; true; y := 0; b2).Consider the initial state s0 = (a0; b0; 0; 0) 2 A�B�Vx�Vy. The reduced state space ARexplored by Algorithm 5.2 for this system when the function Persistent Set(s) returns theset of all enabled transitions in s is presented in Figure 5.3. The initial state is the stateon top of the Figure. The value of the sleep set H(s):Sleep when the search is completedis given between braces beside each state s. Dotted transitions are not explored by thealgorithm of Figure 5.2.

www.manaraa.com

5.3. PROPERTIES OF SLEEP SETS 79For the system considered in the previous example, all states are visited only once bythe algorithm of Figure 5.2. Of course, if one could know it in advance before startingthe search, it would not be necessary to store any states! Unfortunately, for arbitrarysystems, it is impossible to determine before the search is completed which are the statesthat are encountered only once.We will come back to this property of sleep sets in Chapter 8.Note 5.6 Another sleep-set algorithm appeared in [GHP92], where two additional as-sumptions were made: sleep sets were assumed to be used without being combined with apersistent-set algorithm, and the search was assumed to be performed in a \depth-�rst"order. Under these assumptions, another sleep set algorithm was given, that did notrequire to store a sleep set H(s):Sleep with each state in H. Note that, in this Chapter,no assumptions were made about the order in which the search has to be performed.

www.manaraa.com

80 CHAPTER 5. SLEEP SETS

www.manaraa.com

Chapter 6Veri�cation of Safety Properties
6.1 Beyond Deadlock DetectionSo far, we have presented several selective-search algorithms that explore only a reducedpart AR of the global state space AG such that all deadlocks in AG are in AR. In orderto check for properties more elaborate than deadlocks, it is usually necessary to preservemore information, i.e., more states and transitions, in the reduced state space AR.Indeed, consider, for instance, the reachability of a local state l of a process Pi. Pre-cisely, this problem amounts to checking whether there exists a global state s that isreachable from the initial state s0 and such that s(i) = l. The algorithms presentedin the two previous Chapters are not su�cient for checking such a property. This isillustrated by the following example.Example 6.1 Consider a system containing two processes A = fa0; a1g and B = fb0; lg,two objects x and y of type \boolean variable", and three transitionst1 = (a0; true; x := 1; a1), t3 = (b0; true; y := 1; l),t2 = (a1; true; x := 0; a0).State s0 = (a0; b0; 0; 0) 2 A � B � Vx � Vy is the initial state of this system. In s0,transitions t1 and t3 are enabled and independent. The set ft1g is a persistent set ins0. Hence, a selective search can, for instance, explore only t1 from s0. After executingt1 from s0, the state s1 = (a1; b0; 1; 0) is reached. In s1, t2 and t3 are enabled andindependent, and ft2g is a persistent set in s1. Thus, a selective search can explore onlyt2 from s1. After executing t2, the selective search stops since transition t2 leads back tothe initial state s0, which has already been visited with an empty sleep set. Transitiont3, though being enabled in s0 and s1, has never been explored, and local state l has81

www.manaraa.com

82 CHAPTER 6. VERIFICATION OF SAFETY PROPERTIES
(a0; b0; 0; 0)
(a1; b0; 1; 0) t1t2

Figure 6.1: Reduced state space for the system of Example 6.1not been reached. The reduced state space AR explored, which is shown in Figure 6.1,is su�cient for proving the absence of deadlock in the system: since A can loop foreverindependently of the rest of the system, i.e., process B, one can conclude that this systemis deadlock free even without considering the possible behaviors of B. However, AR isnot su�cient to determine if l is reachable or not from the initial state.The phenomenon illustrated above is referred to as the \ignoring problem" in [Val91]:the behavior of some processes (e.g., B in the above example) can be completely ignoredfrom some state reached during a selective search. In order to check other propertiesthan deadlocks, selective-search algorithms have to be adapted to the type of propertyone wants to check.In this Chapter, we present a modi�cation of a selective-search algorithm that can beused for checking the reachability of local states, and, more generally, for checking anysafety property. The idea is to enforce an additional condition, that we call a proviso,during the selective search. This proviso ensures that the choices between enabled inde-pendent transitions made during the search are not completely \unfair" with respect tosome processes. Our proviso can be used with a selective search that makes use of bothpersistent sets and sleep sets to select the transitions that are explored.This Chapter is organized as follows. In the next Section, we present the provisomentioned above. Then, we prove that any selective search using persistent sets andsleep sets augmented with this proviso explores a trace automaton. Loosely speaking, atrace automaton for a given system is an automaton that accepts at least one interleavingfor each trace (concurrent execution) the system can perform from its initial state. Manyinteresting properties of a concurrent system can be checked on a trace automaton.These properties are presented in Section 6.4. Finally, we compare our solution with

www.manaraa.com

6.2. ALGORITHM 83other related work.6.2 AlgorithmWe saw with Example 6.1 that in general, the reduced state space AR that is explored bya selective-search algorithm using persistent sets and sleep sets, as shown in Figure 5.2,is not su�cient to check the reachability of local states. This problem can be solved bymodifying the selective-search algorithm as follows.The modi�cation consists in enforcing an additional condition, called a proviso, onthe sets of transitions that are returned by the function Persistent Set. This provisorequires that the selective search is performed in a depth-�rst order. Let Stack denotethe current \depth-�rst-search stack" during the search, i.e., the set of states that arein the path from the initial state s0 to the currently visited state. The proviso enforcesthe following restrictions on the sets of transitions that can be returned by the functionPersistent Set [HGP92].De�nition 6.2 Each time a call to the function Persistent Set is performed during thesearch, the persistent set in s that is returned by this function has to satisfy the followingrequirement:1. either 9t 2 Persistent Set(s): t 62 s:Sleep and s0 62 Stack, where s0 is the successorof s by t (s t! s0), and s:Sleep is the sleep set associated with s when the call isperformed;2. or Persistent Set(s) = enabled(s).
In other words, the set Persistent Set(s) returned by the function Persistent Set hasto contain at least one transition not in the current sleep set s:Sleep and not lead-ing to the current Stack. Else, if such a persistent set does not exist, the set of allenabled transitions is returned (remember this set is always a persistent set). Let Persis-tent Set Satisfying Proviso(s) denote a persistent set in s that satis�es the above proviso.The algorithm of Figure 6.2 shows how to perform a selective search using persistentsets and sleep sets in a depth-�rst order. This algorithm is very similar to the one ofFigure 5.2. The main di�erence is that, at any time during the search, the data structureStack now contains exactly the states that are in the path currently being explored fromthe initial state s0 to the currently visited state. Note that, as explained in the previous

www.manaraa.com

84 CHAPTER 6. VERIFICATION OF SAFETY PROPERTIES
1 Initialize:Stack is empty; H is empty;2 Search() f3 s0:Sleep = ;; delay(s0) = ;;4 push (s0) onto Stack;5 DFS()6 g7 DFS() f8 s = top(Stack); /* s is visited */9 if s is NOT already in H then f10 enter s in H;11 T = Persistent Set Satisfying Proviso(s)ns:Sleep12 g13 else f14 T = ft j t 2 H(s):Sleep ^ t 62 s:Sleepg;15 s:Sleep = s:Sleep \H(s):Sleep;16 H(s):Sleep = s:Sleep17 g18 for all t in T do f19 s0 = succ(s) after t; /* t is executed */20 s0:Sleep = ft0 2 s:Sleep j (t; t0) are independent in s g;21 if s0 is in Stack then f22 delay(s0) = delay (s0) [fs0:Sleepg23 g24 else f25 delay(s0)= ;;26 push (s0) onto Stack;27 DFS()28 g29 s:Sleep = s:Sleep [ftg30 g31 pop s from Stack; /* s is backtracked */32 if delay(s)6= ; then f33 take s:Sleep out of delay(s);34 push (s) onto Stack;35 DFS()36 g37 g

Figure 6.2: Selective search using persistent sets, sleep sets, and proviso

www.manaraa.com

6.2. ALGORITHM 85Chapter, a state can be visited with di�erent sleep sets, and transitions from this statecan be explored at successive visits of the state (though a transition is never exploredmore than once from the same state). In order to prevent a state s from appearing severaltimes in Stack (in case of cycles), and to guarantee that the exploration is performed ina depth-�rst order, re-explorations of states that are in Stack are delayed (line 21{23):the sleep set that has to be associated with s during such a re-exploration is saved in anauxiliary data structure named \delay". Later, once s has just been backtracked (line31), the algorithm checks (line 32) whether there are delayed re-explorations of s. If yes,state s is then re-visited with a sleep set taken out of delay(s) (line 33{35). (The orderin which sleep sets are taken out of delay(s) does not matter.)In what follows, a state s is said to be \visited" when it is accessed from the top ofStack in line 8 of the algorithm. s is said to be \backtracked" when it is popped fromStack (line 31). When a state s is backtracked, \the last visit of s" is the last time s hasbeen visited, while \during the last visit of s" is the interval of time from the last times has been visited until the last time it has been backtracked. If s t! s0, \the sleep setassociated with s0 after the execution of t from s" denotes the sleep set associated to s0that is computed during the visit of s (line 20) when t is executed from s.Note that, since the search is performed in a depth-�rst order, when a state s isbacktracked, all the transitions t that have been selected to be executed from s (i.e., thatare in set T considered in line 18) during the last visit of s have been executed. Moreover,all the (immediate) successors s0 of s by such transitions t that are not in Stack havealready been visited with the sleep set associated with s0 after the execution of t from s,and have already been backtracked. The value of Stack just after a state s is visited andjust before s is backtracked is the same (and contains s).Example 6.3 Consider again the system of Example 6.1. A possible reduced statespace explored by the algorithm of Figure 6.2 for this system is shown in Figure 6.3. Thevalue of the sleep set H(s):Sleep when the search is completed is given between bracesbelow each state s. Dotted transitions are not explored by the algorithm of Figure 6.2.Initially, the persistent set ft1g is selected in the initial state s0 = (a0; b0; 0; 0). States1 = (a1; b0; 1; 0) is then reached with an empty sleep set. In s1, ft2g is a persistent set.However, it does not satisfy the proviso since t2 leads back to the state s0, which is inStack. Thus, another persistent set has to be computed. The set ft2; t3g is a persistentset in s1 and satis�es the proviso since t3 leads to a state not in Stack. By executing t2before t3 in s1, t2 is introduced in the sleep set associated to the state s2 = (a1; l; 1; 1)reached after the execution of t3 from s1. In s2, only t2 is enabled. Since it is in the sleepset associated to s2, it is not executed, and the search stops. Note that, if sleep sets werenot used (or if the persistent set ft3g was selected in s1), t2 would have been exploredfrom s2, state s3 = (a0; l; 0; 1) would have been explored, and transition t1 from s3 would

www.manaraa.com

86 CHAPTER 6. VERIFICATION OF SAFETY PROPERTIES
(a0; b0; 0; 0)
(a1; b0; 1; 0)

(a0; l; 0; 1)
(a1; l; 1; 1)t1t2 t2 t1

t3
t3fg

fg
ft2gFigure 6.3: Reduced state space with proviso for the system of Example 6.1have been explored as well.

6.3 Trace AutomataIn this Section, we prove that reduced state spaces AR explored by the algorithm ofFigure 6.2 are trace automata (introduced in [God90]) provided that the valid conditionaldependency relation used is weakly uniform.Intuitively, a trace automaton for a given system is an automaton that accepts at leastone interleaving for each trace (concurrent execution) the system can perform from itsinitial state s0. Formally, trace automata are de�ned as follows [God90].De�nition 6.4 Let AG be the global state space of a system. A reduced state space ARfor this system is a trace automaton for this system if, for all sequences w of transitionsfrom the initial state s0 in AG, there exists a sequence w0 of transitions from s0 in AR suchthat w0 is a linearization of a trace de�ned by an extension of w, i.e., w 2 Pref([w0]s0),where Pref([w]s0) denotes the set of the pre�xes of the sequences in [w]s0.Let LAG and LAR be respectively the languages of �nite words formed by symbols of T ,i.e., sequences of transitions, accepted by the automaton AG and AR (cf. Section 2.2). IfAR is a trace automaton for the system, we have:LAG = [w2LAR Pref([w]s0):

www.manaraa.com

6.3. TRACE AUTOMATA 87All sequences of transitions from s0 in AG are represented by a trace in AR, hence thename \trace automaton".Example 6.5 The reduced state space shown in Figure 6.3 is a trace automaton forthe system of Example 6.1. Indeed, the reader can check that for all sequences w oftransitions from s0 in AG, there exists a linearization w0 of a trace de�ned by an extensionof w. For instance, consider the sequence w = t1t2t3t1t2 from s0 in AG. The sequencew0 = t1t2t1t2t1t3 from s0 in AR is such that w00 = t1t2t3t1t2t1 2 [w0]s0 and w 2 Pref(w00).We now prove that the algorithm of Figure 6.2 explores trace automata. However, inorder to establish this result, we need to make an additional assumption about the validconditional dependency relation that is used for computing persistent sets and sleep setsin the algorithm of Figure 6.2: this dependency relation must be weakly uniform1.De�nition 6.6 A valid conditional dependency relation D for a LFCS is said to beweakly uniform if 8t1; t2; t3 2 T ; 8s 2 S, if we have s t1! s1 t2! s2, s t3! s0, (t1; t3; s) 62 Dand (t2; t3; s1) 62 D, then (t1; t2; s) 2 D implies (t1; t2; s0) 2 D.In a similar way, weakly uniform dependency relations can be de�ned between operationson objects. It is straightforward to show that the valid conditional dependency relationon transitions obtained with De�nition 3.21 and weakly uniform valid conditional de-pendency relations between operations on objects is weakly uniform. Note that a validconstant dependency relation is trivially weakly uniform.Example 6.7 The two dependency relations given in Example 3.19 are weakly uniform.In contrast, the dependency relation given in Example 3.20 is not weakly uniform. Indeed,when n = N � 1, a Full operation can be followed by a Send operation on the samebounded FIFO channel of size N , a Receive operation is de�ned and is independentwith both Full and Send operations, Full and Send operations are dependent, butafter executing a Receive operation, they become independent (when n = N � 2). Itis possible to modify the dependency relation given in Example 3.20 to obtain a weaklyuniform dependency relation by considering Send and Full operations as being dependentwhen n < N (instead of when n = N � 1), and Receive and Empty operations as beingdependent when n > 0 (instead of when n = 1).1by analogy with another, stronger, condition called \uniformity condition", which appearedin [KP92a].

www.manaraa.com

88 CHAPTER 6. VERIFICATION OF SAFETY PROPERTIESLet w = t1t2 : : : tn be a sequence of transitions from a state s in the global state spaceAG of the system being analyzed. Let s = s1 t1! s2 t2! s3 : : : tn�1! sn tn! sn+1 be thesequence of states it goes through. In what follows, \t is independent with all transitionsin w" is an abbreviation for \t is independent in si with ti, 1 � i � n".We have the following.Lemma 6.8 Let s be a state in AG, and let w be a sequence of transitions from s in AG.For all wi 2 [w]s from s in AG, let ti denote the �rst transition of wi. Let Persistent Set(s)be a nonempty persistent set in s. If none of the ti are in Persistent Set(s), then alltransitions in Persistent Set(s) are independent with all transitions in w.Proof:The proof is by contradiction. Suppose there exist transitions in w that are dependentwith some transitions in Persistent Set(s) or that are in Persistent Set(s). Let tk be the�rst such transition in w. Hence, all transitions before tk in w are independent with alltransitions in Persistent Set(s), and are not in Persistent Set(s).If tk is in Persistent Set(s), then the sequence w0 = tkt1 : : : tk�1tk+1 : : : tn, i.e., thesequence w where the transition tk has been moved to the �rst position, is in [w]s, andtk is the �rst transition of a wi 2 [w]s. This contradicts the assumption that none of theti is in Persistent Set(s).If tk is not in Persistent Set(s), since tk is dependent in sk with some transition t inPersistent Set(s), the sequence of transitions t1t2 : : : tk�1, which includes only transitionsnot in Persistent Set(s) and which leads from s to sk in AG, is in contradiction with thefact that Persistent Set(s) is a persistent set in s, by the de�nition of a persistent set (cf.De�nition 4.1).Thanks to the \weakly uniform" assumption, we also have the following.Lemma 6.9 Let s be a state in AG, and let w be a sequence of transitions from s inAG. For all wi 2 [w]s from s in AG de�ned from a valid conditional dependency relationthat is weakly uniform, let ti denote the �rst transition of wi. Let Persistent Set(s) bea nonempty persistent set in s. If none of the ti are in Persistent Set(s), then for alltransitions t in Persistent Set(s), we have [w]s � [w]s0 with s t! s0.Proof:By Lemma 6.8, for all transitions t in Persistent Set(s), t is independent with alltransitions in w from s, and hence w is a sequence from s0 in AG, with s t! s0.

www.manaraa.com

6.3. TRACE AUTOMATA 89By de�nition, all w0 2 [w]s0 can be obtained from w by successively permuting pairsof adjacent independent transitions. It is thus su�cient to prove that, for any two wordsw1; w2 2 [w]s0 that di�er only by the order of two adjacent independent transitions, ifw1 2 [w]s then w2 2 [w]s.Hence, let us assume that w1 = t1 : : : ab : : : tn and w2 = t1 : : : ba : : : tn. We have froms0 in AG s0 t1! s1 t2! s2 : : : tj! sj a! sj+1 b! sj+2 : : : tn! snand s0 t1! s1 t2! s2 : : : tj! sj b! s0j+1 a! sj+2 : : : tn! sn:Consider the states s00; s000 and s0000 in AG such that s t1:::tj) s00 a! s000 b! s0000. Sincet is in Persistent Set(s) and since none of the �rst transitions ti of a wi 2 [w]s are inPersistent Set(s), by Lemma 6.8, t is independent with all transitions in w. This impliesthat t and a are independent in s00, and that t and b are independent in s000. Moreover, wehave s00 t! sj. Since t is independent with a in s00 and independent with b in s000, and thata and b are independent in sj, a and b are independent in s00 since the valid dependencyrelation considered is weakly uniform. Consequently, w2 2 [w1]s = [w]s.Lemma 6.10 Let s be a state that is visited during the search performed by the algorithmof Figure 6.2. When s is backtracked, let H(s):Sleep denote the sleep set stored with sin H, and let AR denote the reduced state space that has been explored so far. Let w bea nonempty sequence of transitions from s in AG. For all wi 2 [w]s from s in AG, let tidenote the �rst transition of wi. If none of the ti are in H(s):Sleep, then there exists astate s0 in AR such that the following conditions hold:1. s w0) s0 t1! s00 in AR where t1 is one of the transitions ti, and w0 does not containany transitions in w,2. [ww0]s = [w0w]s from s in AG, and3. if we note w1 = t1w01 2 [w]s0, and for all w0i 2 [w01]s00, t0i denotes the �rst transitionof w0i, none of the t0i are in s00:Sleep, where s00:Sleep denotes the sleep set associatedwith s00 after the execution of t1 from s0.Proof:The proof is by induction on the order in which states are backtracked.Let s1 be the �rst state that is backtracked during the search. When s1 is back-tracked, s1 has been visited exactly once. Let s1:Sleep be the sleep set that was asso-ciated to s1 when s1 was visited. The value of s1:Sleep was saved with s1 in H, and

www.manaraa.com

90 CHAPTER 6. VERIFICATION OF SAFETY PROPERTIESthus we have H(s1):Sleep = s1:Sleep. During this visit of s1, a call to the function Per-sistent Set Satisfying Proviso was performed. Let Persistent Set Satisfying Proviso(s1)denote the persistent set in s1 satisfying the proviso that was returned. If there exists atransition t in Persistent Set Satisfying Proviso(s1) such that t 62 s1:Sleep and s1 t! s0and s0 62 Stack, such a transition t would have been executed from s1, and s0 wouldhave been backtracked before s1, which is impossible. Therefore, because of the proviso,we know that all enabled transitions not in s1:Sleep have been executed from s1 (theyall lead to states in the Stack). Among these, let t1 be the �rst transition ti that hasbeen executed from s1 (we know that all transitions ti have been executed from s1 since8ti : ti 62 s1:Sleep). Let s00 be the state reached after executing t1 from s1: s1 t1! s00. Wehave w1 = t1w01. Let s00:Sleep be the sleep set associated with s00 after the execution oft1 from s1. Let us show that, for all w0i 2 [w01]s00, the �rst transition t0i of w0i is not ins00:Sleep.Indeed, assume the opposite, i.e., there exists some transition t0i 2 s00:Sleep such thatt0i is the �rst transition of a w0i 2 [w01]s00 . This implies that t0i and t1 are independent ins1, else t0i would not have been passed on to the sleep set associated to s00. Since theyare independent in s1, t0i is enabled in s1 and is the �rst transition of a path wi. Giventhat t0i is in s00:Sleep, either t0i was in s1:Sleep or was added after being executed froms1. The �rst possibility is in contradiction with the fact that t0i is also the �rst transitionof some wi 2 [w]s1 and thus is assumed not to be in s1:Sleep. The second possibilityis incompatible with the fact that t1, not t0i, is the �rst transition among the ti to beexecuted from s1.Therefore, the lemma holds for the �rst backtracked state s1 with w0 = �. Now, let usprove that, if the lemma holds for the (n� 1)st backtracked states, then it holds for thenth backtracked state sn. Two cases are possible: either sn has never been backtrackedbefore, or it has already been backtracked during the search. We consider these two casessuccessively.If sn is backtracked for the �rst time, sn has been visited exactly once. Let sn:Sleepbe the sleep set that was associated to sn when sn was visited. The value of sn:Sleepwas saved with sn in H, and thus we have H(sn):Sleep = sn:Sleep. During this (�rst)visit of sn, a call to the function Persistent Set Satisfying Proviso was performed. LetPersistent Set Satisfying Proviso(sn) denote the persistent set in sn satisfying the provisothat was returned. If at least one transition ti is in Persistent Set Satisfying Proviso(sn),ti has been explored from sn since we know ti 62 sn:Sleep. By considering the �rst tiwhich has been explored from sn during this visit, and by applying a reasoning iden-tical to the one done above for s1, one concludes that the lemma holds for sn. Con-sider the case where 8ti : ti 62 Persistent Set Satisfying Proviso(sn). This means thatthere exists at least one transition enabled in sn and not in sn:Sleep that has not been

www.manaraa.com

6.3. TRACE AUTOMATA 91explored from sn. Hence, because of the proviso, there exists a transition t 2 Persis-tent Set Satisfying Proviso(sn) such that t 62 sn:Sleep, sn t! s and s 62 Stack. Since8ti : ti 62 Persistent Set Satisfying Proviso(sn), by lemma 6.8, t is independent with alltransitions in w. Therefore, w is a sequence of transitions from s in AG. Moreover, byLemma 6.9, we know that [w]sn � [w]s. Since none of the �rst transitions of sequences in[w]sn are in sn:Sleep and since none of them are executed from sn, none of the �rst tran-sitions of sequences in [w]s are in the sleep set s:Sleep that is associated with s after theexecution of t from sn. Since s 62 Stack, when sn is backtracked, s has already been vis-ited with the sleep set s:Sleep, and has already been backtracked. Consequently, none ofthe �rst transitions of sequences in [w]s are in H(s):Sleep (since H(s):Sleep � s:Sleep).By applying the inductive hypothesis to state s with w as sequence of transitions in AG,we know there exists a state s0 in AR such that s w0) s0 and s0 t1! s00 in AR where t1denotes one of the transitions ti, [ww0]s = [w0w]s from s in AG, and if we note w1 = t1w01,for all the �rst transitions t0i of a w0i 2 [w01]s00 , t0i 62 s00:Sleep, where s00:Sleep denotes thesleep set associated with s00 after the execution of t1 from s0. Since t is independent withall transitions in w, we have [tw0w]sn = [tww0]sn = [wtw0]sn. Consequently, the lemmaholds in sn.Finally, consider the case where sn has already been backtracked during the search.Let Hold(sn):Sleep be the sleep set stored with sn in H the previous time sn wasbacktracked. We know that H(sn):Sleep � Hold(sn):Sleep (the sleep set stored witha state can only shrink between successive visits of that state). If for all transitionsti,ti 62 Hold(sn):Sleep, the inductive hypothesis can be applied to state sn already back-tracked with Hold(sn):Sleep as sleep set stored with it in H, which directly provesthe lemma for state sn with H(sn):Sleep. Else, there exists a transition ti such thatti 2 Hold(sn):Sleep. Since ti 62 H(sn):Sleep, ti has been removed from Hold(sn):Sleep,and has been executed from sn during the last visit of sn. If there are several such transi-tions ti, consider the �rst one t1 which has been executed at this last visit. Let s00 be thestate reached after executing t1 from sn. The sleep set s00:Sleep associated with s00 afterthe execution of t1 from sn is computed from the sleep set H(sn):Sleep, which does notcontain any transitions ti. Therefore, by applying the same reasoning as the one doneabove for s1, one concludes that the lemma holds for sn with H(sn):Sleep.Theorem 6.11 Let s be a state in the reduced state space AR explored by the algorithmof Figure 6.2. Let H(s):Sleep denote the sleep set stored with s in H once the search iscompleted. Let w be a sequence of transitions from s in AG. For all wi 2 [w]s from s inAG, let ti denote the �rst transition of wi. If none of the ti are in H(s):Sleep, then thereexists a sequence w0 of transitions from s in AR such that w 2 Pref([w0]s).

www.manaraa.com

92 CHAPTER 6. VERIFICATION OF SAFETY PROPERTIESProof:The proof proceeds by induction on the length of w. For jwj = 0, the result isimmediate. Now, assume the theorem holds for paths (sequences of transitions) of lengthn � 0 and let us prove that it holds for a path w of length n + 1. For all wi 2 [w]s froms in AG, let ti denote the �rst transition of wi.Once the search is completed, all states in AR have been backtracked. By applyinglemma 6.10 to state s, we know that there exists a state s0 in AR such that s w0) s0 t1! s00in AR where t1 denotes one of the transitions ti, [ww0]s = [w0w]s from s in AG, and ifwe note w1 = t1w01, for all the �rst transitions t0i of a w0i 2 [w01]s00, t0i 62 H(s00):Sleep.This implies that w is a sequence in AG from all intermediate states reached by w0from s, including s0. From the successor state s00 of s0 by t1, there is a sequence w01in AG such that w1 = t1w01 2 [w]s0. Since jw01j = n, and since 8t0i : t0i 62 H(s00):Sleep,by applying the inductive hypothesis to state s00, we know there exists a sequence w00explored from s00 in AR such that w01 2 Pref([w00]s00). In other words, there exists asequence w000 from s00 in AG such that w000 2 [w00]00s and w000 = w01wsuff . From state s, weknow that the sequence w0t1w00 is explored in AR. From s, we have in AG: [w0t1w00]s =[w0t1w000]s = [w0t1w01wsuff]s = [w0wwsuff]s (since [w]s0 = [t1w01]s0) = [ww0wsuff]s (since[w0w]s = [ww0]s). Obviously, w 2 Pref([ww0wsuff]s), and thus w 2 Pref([w0t1w00]s),w0t1w00 being explored in AR from s.We can now easily prove the following.Theorem 6.12 Let AG be the global state space of a given system, and let AR be thereduced state space explored by the algorithm of Figure 6.2 for this system. Then, AR isa trace automaton for the system considered.Proof:By applying Theorem 6.11 in the initial state s0 of AR and by De�nition 6.4, onedirectly obtains that AR is a trace automaton, since H(s0):Sleep = ;.6.4 Properties of Trace AutomataMany interesting properties of a concurrent system can be checked on a trace automatonfor this system.Theorem 6.13 Let AG be the global state space of a system, and let AR be a traceautomaton for this system. For all t 2 T , t is executed in AG i� t is executed in AR.

www.manaraa.com

6.4. PROPERTIES OF TRACE AUTOMATA 93Proof:Let t be a transition that occurs in AG. Therefore, there exists a sequence w of tran-sitions from s0 in AG that leads to a state s in AG such that s t! s0. By de�nition ofa trace automaton, there exists a sequence w0 of transitions from s0 in AR such that w0is a linearization of a trace de�ned by an extension of wt. Consequently, t occurs in w0,and thus in AR.The other direction of the theorem is immediate to establish since all sequences of tran-sitions in AR are sequences of transitions in AG.The following theorem states that the reachability of local states can also be checkedon a trace automaton.Theorem 6.14 Let AG be the global state space of a system, and let AR be a traceautomaton for this system. For all processes Pi, for all local states l 2 Pi, l is reachablefrom the initial state s0 in AG i� l is reachable from s0 in AR.Proof:By de�nition, a local state l 2 Pi is reachable from the initial state s0 in AG i� thereexists a global state s that is reachable from s0 in AG, and such that s(i) = l. Since l isreachable from s0 in AG, let w be the shortest sequence of transitions from s0 to a states in AG such that s(i) = l. We haves0 t1! s1 t2! s2 : : : tn�1! sn�1 tn! s:We know that sn�1(i) 6= l, else w would not be the shortest path leading from s0 to l.Therefore, process Pi is active for transition tn, and l 2 post(tn). By Theorem 6.13, weknow that there exists a state s0 in AR from which the transition tn is executed in AR.After executing tn from s0, a state s00 such that s00(i) = l is reached in AR.The other direction of the theorem is immediate to establish since all states in AR arestates in AG.Therefore, transitions that are never executed (dead code) can be checked for on atrace automaton. Moreover, checking if a given condition c, often called an assertion, istrue in a particular local state l of a process Pi can be done by adding a new local statelerror to Pi and a new transition (l; Not(c); skip; lerror) to the system. Then, exploring atrace automaton for the modi�ed system is su�cient to prove that such assertions arenever violated. Many properties can be expressed by using assertions, like for instance,bu�er overruns (i.e., attempts to send a message to a full queue), unspeci�ed receptions,etc. Of course, adding transitions to a system introduces dependencies between theseadded transitions and other transitions, and has to be done as carefully as possible.

www.manaraa.com

94 CHAPTER 6. VERIFICATION OF SAFETY PROPERTIESGlobal properties, i.e., properties that involve more than one process, can be checkedby making them local as follows. If a property is not local to a process, one introduces anadditional process in the system to which it is local. For instance, checking an invariant,i.e., if a given condition inv remains true in all states of AG, can be done by adding aprocess Pi = fl; lerrorg with a single transition (l; Not(inv); skip; lerror) testing the truthvalue of the condition inv.More generally, the veri�cation of any safety property can be reduced to checking thereachability of a local state as follows [GW91b]. Safety properties can be represented bypre�x closed automata on �nite words [AS87]. We assume such a representation AS andproceed as follows:1. Build the automaton A:S corresponding to the complement of AS. Since AS ispre�x closed, A:S is an automaton with only one accepting state (denoted X).2. Check if the local state X is reachable in the new concurrent system composed ofthe original system and of the automaton A:S.Therefore, the veri�cation of any safety property can be performed using a trace automa-ton AR. Note that this framework is still applicable for safety properties represented bymore than one automaton A:S.6.5 Comparison with Other WorkIn [Val91], another \proviso" is given to be used with the (strong) stubborn set techniquein order to check for properties more elaborate than deadlocks. More generally, thisproviso can actually be used with all the algorithms computing persistent sets presentedin Chapter 4, not only with the stubborn set algorithm of Section 4.5.This proviso requires the detection of terminal maximal strongly connected compo-nents (TMSCC) in the explored reduced state space AR, viewed as a directed graph. Apart G of AR is a strongly connected component in AR if all states in G are reachablefrom all states in G. A strongly connected component in AR is said to be maximal ifit is not included in any other strongly connected component. A strongly connectedcomponent G is said to be terminal if there is no outgoing transition from it, i.e., if thereis no state not in G that is reachable from a state in G. Checking maximal stronglyconnected components in a directed graph can be done by using the well-known algo-rithm of Tarjan [Tar72, AHU74]. This algorithm is based on a depth-�rst search in thegraph. Its time complexity is linear in the size of the reduced state space AR. It requiresthe use of an additional stack and the storage of the value of a variable \DFNUMBER",

www.manaraa.com

6.5. COMPARISON WITH OTHER WORK 95which labels the reachable states in the order they are visited, with each state storedin randomly accessed memory. (See, e.g., [AHU74] for a complete presentation of thisalgorithm.)The proviso of [Val91] consists in the following modi�cation of the classical persistent-set selective search not using sleep sets, as shown in Figure 4.1 and performed in adepth-�rst order. In the following de�nition, the \root" of a TMSCC denotes the laststate in the TMSCC that is backtracked during the depth-�rst selective search.De�nition 6.15 Each time a state s is backtracked during the search performed bythe algorithm of Figure 4.1, if s is the root of a terminal maximal strongly connectedcomponent TMSCC in AR, and if there are transitions t that are enabled in s and neverexecuted from any state in TMSCC, then another persistent set in s that contains atleast one of such transitions t is computed, and the search continues from s to explorethe transitions of this new persistent set that have not already been explored from s.Since the union of two persistent sets in s is a persistent set in s (it is easy to see this fromthe de�nition of persistent sets), this proviso is also equivalent to a restriction on the per-sistent sets that can be returned by the function Persistent Set in a persistent-set selectivesearch. Indeed, everything happens as if the value of Persistent Set(s) was computed bysuccessive approximations during the exploration of AR (the value of Persistent Set(s) isaugmented if s is currently the root of a TMSCC).It can be proved that the following theorem holds in all states in the reduced statespace AR explored by a persistent-set selective search using the above proviso (similar toTheorem 2.29 of [Val91]).Theorem 6.16 Let AG be the global state space of a system, and let AR be the reducedstate space explored by a persistent-set selective search, as shown in Figure 4.1, using theproviso of De�nition 6.15. Let s be a state in AR. For all sequences w of transitions froms in AG, there exists a sequence w0 of transitions from s in AR such that w 2 Pref([w0]s).Obviously, reduced state spaces AR that satisfy the above theorem are trace automata.But the converse is not true, since the above theorem holds in all states in AR, whilethe de�nition of trace automata requires that it holds only in the initial state s0 ofAR. Therefore, the above theorem is stronger than is necessary for proving all theproperties considered in the previous Section. The notion of trace automaton is weakerwhile su�cient for checking these properties, and thus allows more reduction in AR.Note that the proviso of De�nition 6.2 can also be used without sleep sets, i.e., inconjunction with a persistent-set selective search, as shown in Figure 4.1. In this case,

www.manaraa.com

96 CHAPTER 6. VERIFICATION OF SAFETY PROPERTIESthe �rst condition of the proviso of De�nition 6.2 merely becomes that the set Persis-tent Set(s) returned by the function Persistent Set has to contain at least one transitionnot leading to the current Stack, and the \weakly uniform" assumption on the depen-dency relation used is no longer necessary. Indeed, by considering again the proofs givenin Section 6.3 in the case where all sleep sets are always empty, one directly obtains aproof that the reduced state spaces AR explored by a persistent-set selective search usingthis modi�ed proviso are trace automata, and, moreover, that they satisfy Theorem 6.16.In the case where sleep sets are not used, which one of these two provisos is then the\best"? If the explored reduced state space AR does not contain any terminal maximalstrongly connected components TMSCC such that there are transitions t that are en-abled in a state in TMSCC and never executed from any state in TMSCC, then theproviso of De�nition 6.15 will not force the selection of any additional transition, and itsimpact on AR will be void; on the other hand, the proviso of De�nition 6.2 modi�ed asdescribed above might force the selection of additional transitions if AR contains cycles.If during the search there are terminal maximal strongly connected components TMSCCsuch that there are transitions t that are enabled in a state in TMSCC and never ex-ecuted from any state in TMSCC, both provisos will force the selection of additionaltransitions and will have an impact on AR. In this case, it is impossible to predict whichproviso will yield the smaller AR. Indeed, intuitively, the additional transitions forcedby the proviso of De�nition 6.2 will be executed from the �rst backtracked state of theTMSCC, while the additional transitions forced by the proviso of De�nition 6.15 will beexecuted from the root of the TMSCC, i.e., the last backtracked state of the TMSCC.Hence, the two AR that are obtained will then not be comparable in general (in the sensethat one of them is not included in the other). Consequently, there is no \best" proviso:overall, it is impossible to predict which proviso will explore the smaller reduced statespace.Note that the proviso of De�nition 6.2 is much simpler to implement than the provisoof De�nition 6.15. Moreover, it does not require the use of any additional data structure.Finally, note that the proviso of De�nition 6.15 is not compatible with sleep sets.In [GW91b, GW93], the reachability of a local state l of a process Pi (and hencethe veri�cation of any safety property) is reduced to the deadlock detection problemby a transformation of the system description. This transformation consists of addingtransitions in the original system (see [GW91b]). The new dependencies introduced inthe system by these additional transitions ensure that if the local state l one is interestedin is reachable from the initial state s0, it will be visited during a selective search, withoutthe need of any proviso.It is not known whether the method of [GW91b] gives better reductions than the useof the proviso of De�nition 6.2. An advantage of using a proviso during a selective search,

www.manaraa.com

6.5. COMPARISON WITH OTHER WORK 97and thus of generating a trace automaton, is that many properties (assertion violations,dead code, deadlocks, etc.) can be checked simultaneously during the same selectivesearch. On the other hand, the transformation of the system described in [GW91b]depends on the local state l to be checked: the transitions that are added to the systemduring this transformation are there to prevent the selective search from missing l, if it isreachable, but are not su�cient for checking any other local states than l. The methodof [GW91b] is thus more goal-oriented.Finally note that the proviso of De�nition 6.2 is simpler to implement than the systemtransformation of [GW91b].

www.manaraa.com

98 CHAPTER 6. VERIFICATION OF SAFETY PROPERTIES

www.manaraa.com

Chapter 7Model Checking
7.1 Beyond Safety PropertiesSafety properties cover most of the properties of concurrent reactive systems that areveri�ed in practice. It is nevertheless worth studying how partial-order methods can beadapted for checking liveness properties. Intuitively, whereas a safety property stipulatesthat \bad things" do not happen, a liveness property stipulates that \good things"do eventually happen [Lam77]. For instance, a liveness property can specify that eachprocess of a concurrent system must always be able to eventually progress from its currentlocal state. Such a property cannot be checked by only considering the �nite behaviorsof the system, as is the case for a safety property. Indeed, only in�nite behaviors of thesystem can violate the above property.Representing liveness properties and checking in�nite behaviors of concurrent systemsrequire the use of concepts and algorithms that are more complex than those for veri-fying safety properties. In this Chapter, we discuss various techniques [Val90, GW91a,Pel93, Val93, Pel94, GW94] that have been proposed for the veri�cation of liveness prop-erties in the context of partial-order methods. Speci�cally, these techniques address themodel-checking problem for linear-time propositional temporal logic [MP92]. Linear-timetemporal-logic formulas can be used for specifying properties of in�nite behaviors of a sys-tem, including arbitrary liveness properties. Given a concurrent system and a linear-timetemporal-logic formula f , checking that all in�nite computations of the system satisfy fis referred to as the model-checking problem.The techniques presented in [Val90, GW91a, Pel93, Val93, Pel94, GW94] di�er by theassumptions they make about the representation of the property to be checked, and bythe veri�cation strategies they adopt. In this Chapter, we brie
y present these tech-niques, and relate them with each other. We point out the key problems underlying the99

www.manaraa.com

100 CHAPTER 7. MODEL CHECKINGveri�cation of liveness properties using partial-order methods, and compare the solutionsthat have been proposed for solving these problems. We also show how the proposedtechniques complement each other.7.2 Automata and Model CheckingTo solve the model-checking problem, the only fact we need about linear-time temporallogic is that, for each formula f , it is possible to build a B�uchi automaton Af that acceptsexactly the in�nite words satisfying the temporal formula f [WVS83]. Formally, a B�uchiautomaton[B�uc62] is a tuple A = (�; S;�; s0; F), where� � is an alphabet,� S is a set of states,� � � S � �� S is a transition relation,� s0 2 S is the initial state, and� F � S is a set of accepting states.A B�uchi automaton is thus an automaton as de�ned in Section 2.2 augmented with aset F of accepting states. B�uchi automata are used to de�ne languages of !-words, i.e.,functions from the ordinal ! to the alphabet �. Intuitively, a word is accepted by a B�uchiautomaton if the automaton has an in�nite execution that intersects set F in�nitely often.Formally, we de�ne a computation � of A over an !-word w = a1a2 : : : as an !-sequence� = s0; s1; : : : (i.e., a function from ! to S) where (si�1; ai; si) 2 �, for all i � 1. Acomputation � = s0; s1; : : : is accepting if there is some state in F that repeats in�nitelyoften, i.e., for some state x 2 F there are in�nitely many i 2 ! such that si = x. The!-word w is accepted by A if there is an accepting computation of A over w.A construction of a B�uchi automaton Af from a formula f can be found in [Wol89] andin Chapter 4 of [Tha89]. This construction is exponential in the length of the formula,but this is usually not a problem since the formulas to be checked are quite short andsince the algorithm often behaves much better than its upper bound.The veri�cation procedure can then be the following [WVS83, VW86]. (This procedureis often referred to as the automata-theoretic approach to model-checking.)1. We �rst build a B�uchi automaton for the negation of the formula f . The resultingautomaton A:f = (�:f ; S:f ;�:f ; s0:f ; F:f) accepts all sequences of states thatviolate f .

www.manaraa.com

7.2. AUTOMATA AND MODEL CHECKING 1012. Then we compute the product automaton AG of the original system and of theautomaton A:f in such a way that the product automaton accepts all in�nitecomputations of the system that are accepted by the automaton A:f , i.e., all com-putations of the system that violate the formula f .3. Finally, we check if the automaton AG is empty, i.e., if it does not accept anysequence. If AG is empty, we have proven that all in�nite computations of Psatisfy the formula f .Of course, if the negation of the property A:f is directly provided by the user, the �rststep of the above procedure can be skipped.Checking if the B�uchi automaton AG is nonempty amounts to checking if there existsa cycle in AG (viewed as a graph) that is reachable from the initial state s0 and thatcontains an accepting state. Actually, it is not necessary to consider all possible cyclesin AG, it is su�cient to check if AG contains at least one maximal (nontrivial) stronglyconnected component that is reachable from the initial state and that includes a statefrom the set F . Equivalently, a B�uchi automaton is nonempty if it has some acceptingstate that is reachable from the initial state and reachable from itself. Several algorithmscan be used for checking emptiness of B�uchi automata (see [GH93] for an overview),which can be done in linear time with respect to the size of the B�uchi automaton. Notethat computing AG and checking its emptiness can be done at the same time.Di�erent de�nitions are possible for the product automaton AG. In [GW91a, Val93],it is assumed that the automaton A:f is an additional process that synchronizes withthe other processes of the system on transitions that have the same label, i.e., the same\action". Precisely, if ASys denotes the global state space of the concurrent systembeing veri�ed, the product automaton AG of the system ASys = (�Sys; SSys;�Sys; s0Sys)and of the new process A:f = (�:f ; S:f ;�:f ; s0:f ; F:f) is the B�uchi automaton AG =(�; S;�; s0; F) de�ned by� � = �Sys [�:f ,� S = SSys � S:f ,� ((s; t); a; (u; v)) 2 � when{ a 2 �Sys \ �:f and (s; a; u) 2 �Sys and (t; a; v) 2 �:f ,{ a 2 �Sys n �:f and (s; a; u) 2 �Sys and v = t,{ a 2 �:f n �Sys and u = s and (t; a; v) 2 �:f ,� s0 = (s0Sys; s0:f),� F = SSys � F:f .

www.manaraa.com

102 CHAPTER 7. MODEL CHECKINGActions that appear both in ASys and in A:f are synchronized, others are interleaved.Transitions of ASys that synchronize with A:f are said to be visible. In this framework,transitions of the system and of the property are \synchronized on actions".In contrast, it is assumed in [Val90, Pel93, Pel94] that the automaton A:f is a specialautomaton whose transitions test the values of the variables of the system wheneverthe system executes a transition. Precisely, if ASys denotes the global state space ofthe concurrent system being veri�ed, the product automaton AG of the system ASys =(�Sys; SSys;�Sys; s0Sys) and of the automaton A:f = (�:f ; S:f ;�:f ; s0:f ; F:f) is theB�uchi automaton AG = (�; S;�; s0; F) de�ned by� � = �:f ,� S = SSys � S:f ,� ((s; w); a; (u; v)) 2 � when (s; t; u) 2 �Sys; (w; a; v) 2 �:f and a evaluates to truein state s of ASys,� s0 = (s0Sys; s0:f),� F = SSys � F:f .Transitions of the system that can a�ect the truth value of any state predicate appearingin the formula are said to be visible. In this framework, transitions of the system and ofthe property are \synchronized on states".Note that the automata-theoretic approach to model checking has the advantages of\on-the-
y veri�cation". By this, we mean that we build the automaton AG for the com-bination of the system and the property without ever building the automaton ASys for thesystem. Maybe surprisingly, the product automaton can be smaller than the automatonfor the system alone because the property acts as a constraint on the behavior of the sys-tem. This approach of model checking thus has a head start over other approaches thatrequire the automaton ASys to be built. In the context of partial-order methods, we willsee that another advantage of the automata-theoretic approach is that the structure ofthe automaton A:f and its current local state can be exploited by partial-order methodsto guide the selective search, and thus to improve its e�ciency. The combination of on-the-
y veri�cation with partial-order methods �rst appeared in [GW91a], and was lateradopted in [Val93, Pel94] (the techniques of [Val90, Pel93] did not follow this paradigm).7.3 Using Partial Orders for Model CheckingIn practice, the limits of all model-checking methods come from the often excessive sizeof the product AG. In order to use partial-order methods for doing model checking, we

www.manaraa.com

7.3. USING PARTIAL ORDERS FOR MODEL CHECKING 103would like to be able to proceed as follows.1. Build a B�uchi automaton for the negation of the formula f . The resulting automa-ton is A:f .2. Compute a trace automaton AR corresponding to the concurrent executions of theprocesses of the system, and of the automaton A:f .3. Check if the automaton AR is empty.Note that the temporal property represented by A:f can be sensitive to the order ofindependent transitions of the system. In the framework where transitions of the systemand of the property are synchronized on actions, the fact that the order of actions thatappear in A:f cannot be ignored while exploring the reduced state space is handled bytreating A:f as any other process of the concurrent system [GW91a].In the framework where transitions of the system and of the property are synchro-nized on states, the problem can be solved by considering all visible transitions (i.e., alltransitions that can a�ect the truth value of any state predicate appearing in the for-mula) as being dependent, and by restricting the class of properties that can be checkedto stuttering-invariant properties [Val90]. Informally, stuttering-invariance means thatthe truth value of a formula on an in�nite sequence of states does not change if statesin the sequence are repeated a �nite number of times [Lam83]. Prohibiting stutteringis important in this framework since, without this restriction, all transitions could po-tentially a�ect the truth value of the formula, and hence would have to be consideredas dependent, which would annihilate any bene�t coming from the use of partial-ordermethods. In linear-time temporal logic, a simple way to restrict the properties that canbe expressed in the logic to stuttering-invariant properties is to disallow the use of the\next" temporal operator [Lam83].Once the above requirements are satis�ed, can a trace automaton AR for the systemreplace the product AG for model checking?It was shown in [GW91a] that a trace automaton AR can be used for checking that allin�nite behaviors of the system that contain an in�nite number of occurrences of visibletransitions satisfy the given property. In this case, verifying liveness properties can thusbe done on the same reduced state space as for verifying safety properties.If one is also interested in considering the in�nite behaviors of the system that containonly a �nite number of occurrences of visible transitions, using a trace automaton is notsu�cient. It is then necessary to preserve more states and transitions in the reducedstate space explored by a selective search. Several provisos have been proposed for this

www.manaraa.com

104 CHAPTER 7. MODEL CHECKINGpurpose. These provisos thus also preserve in AR the presence of at least one cycle ofinvisible transitions that passes through an accepting state, if there exists one in AG.The �rst such proviso that has been proposed [Val90] was intended to be used inconjunction with the stubborn set technique (cf. Section 4.5), but can actually be usedwith other persistent-set algorithms as well. This proviso requires that:1. at each state s reached during the search, if there is an enabled invisible transition,at least one invisible transition is executed from s in AR; and2. every cycle in AR contains at least one state s that satis�es the following condition:the transitions explored from s in AR are the enabled transitions of a stubborn setcontaining all visible transitions.Intuitively, the �rst requirement preserves in AR cycles of invisible transitions, while thesecond requirement ensures that, when exploring these cycles, visible transitions are not\ignored". In [Val90], an algorithm is given to detect cycles in AR that do not satisfyRequirement 2 above. When such a cycle is detected, this algorithm forces the selectionof new transitions from one of the states in the cycle to make it satisfy Requirement 2.Another solution to satisfy Requirement 2 is to systematically select at each visitedstate the enabled transitions in a stubborn set containing all visible transitions [Val93].However, this radical solution is very restrictive since it always forces the selection ofa very speci�c type of persistent set at each visited state. This prevents the selectionof many other persistent sets, including smaller ones, which is strongly in contradictionwith the heuristics presented in Chapter 4. Therefore, the practicality of this solutionseems problematic.Yet another solution to ensure Requirement 2, presented in [Pel94], is to prevent theselective search from closing cycles except from states where all enabled transitions areexecuted. In other words, at each visited state, the selected persistent set either has tocontain exclusively transitions not leading to the current Stack, or has to be the set ofall enabled transitions. This proviso can thus be viewed as a more restrictive version ofthe proviso of De�nition 6.2, which was used for verifying safety properties.Due to the lack of experimental data, it is not known how the performances of thesedi�erent provisos for ensuring Requirement 2 compare with each other.Note that, when model-checking is performed on-the-
y, it is possible to optimizethe selective search by using information about the current local state of A:f and thenext transitions that can be executed from it. In the framework where transitions of thesystem and of the property are synchronized on actions, it is shown in [Val93] that itis necessary to ensure the �rst requirement only when the current local state of A:f isaccepting, while it is necessary to enforce a proviso for ensuring Requirement 2 only when

www.manaraa.com

7.4. MODEL CHECKING WITH FAIRNESS ASSUMPTIONS 105the current local state of A:f is not accepting. In the framework where transitions ofthe system and of the property are synchronized on states, it is shown in [Pel94] how thetransitions outgoing from the current local state of A:f can be used to limit the numberof transitions that need be explored.7.4 Model Checking with Fairness AssumptionsIt is useful in veri�cation to take into account speci�c assumptions about the context inwhich processes of a concurrent system are executed. For instance, if concurrent processesare executed on di�erent processors, it is customary to assume that, if a process has atransition that remains enabled, it will eventually execute it. This assumption is oftenreferred to as weak fairness [MP92]. Various notions of fairness have been studied [Fra86,MP92]. The main purpose of these notions is to exclude behaviors of the concurrentsystem that would not be allowed by the speci�c type of process scheduler that is assumed.The fairness assumptions then act as �lters, removing certain classes of in�nite behaviorsthat con
ict with the assumptions made about the process scheduler.Like liveness properties, fairness assumptions can be modeled by linear-time temporal-logic formulas [LP85], or by B�uchi automata [ACW90]. If fairness assumptions are mod-eled by a formula f 0, the veri�cation problem amounts to checking that all in�nite behav-iors of the system satisfy the formula f 0 � f (where � denotes logical implication), whichcan be done as described in the previous section. If fairness assumptions are modeledby B�uchi automata Afair that are synchronized with the processes of the system1, thede�nition of the product automaton AG of the system, of the automata Afair, and of theautomaton A:f slightly di�er from those given in Section 7.2 (since there are now severalB�uchi automata in the product), but the veri�cation problem can be reduced again tochecking the emptiness of AG [GW91a].At �rst glance, the interaction of the modeling of fairness assumptions and of partial-order methods is problematic since fairness assumptions often concern all processes in-volved in the system and hence may introduce many dependencies, which can wipe outthe bene�t of using partial-order methods. A solution to avoid this problem is to repre-sent fairness assumptions in a distributed way, by assigning progress conditions to eachprocess individually [GW91a]. This is equivalent to model fairness assumptions by aset of B�uchi automata such that each B�uchi automaton synchronizes with at most oneprocess in the system. Such a way, fairness assumptions do not introduce any additionaldependency among the transitions of the concurrent system [GW91a].1Another similar possibility is to directly specify acceptance sets for the processes in the system, thusto de�ne the system as being a product of B�uchi automata [ACW90].

www.manaraa.com

106 CHAPTER 7. MODEL CHECKINGNote that the product of two B�uchi automata accepts the intersection of the lan-guages accepted by these two automata, and hence its e�ect is equivalent to a logicalconjunction in temporal logic. Consequently, the translation of the solution given abovein the temporal logic world becomes that, if a formula f is a conjunction of sub-formulasfi, transitions of the system that can a�ect sub-formula fk need not be considered asbeing dependent with transitions that can a�ect sub-formula fl, with k 6= l, althoughthese transitions are all visible. This observation also appeared in [Pel93] where it isrecommended that each temporal-logic formula to be checked should be rewritten in anequivalent form with as many as possible boolean operators at the outermost levels ofthe formula, in order to express it as a conjunction of sub-formulas, which can then betreated separately when adding dependencies among visible transitions of the concurrentsystem.Once the above requirements are satis�ed, can a trace automaton AR for the systemreplace the product automaton AG for model checking with fairness assumptions? Theanswer to this question is negative because in�nite computations involving more thanone process are not necessarily preserved in AR [GW91a]. Indeed, it is quite possiblethat the automaton AG accepts some fair behavior of the system whereas AR does notaccept any fair behavior. This might seem counter-intuitive because one could expectthat, if AG accepts some word w, then by permuting independent transitions of w, onewould obtain an accepting computation of AR, which would then be nonempty. This isactually true for �nite computations but not for in�nite computations. Indeed, considertwo processes that are totally independent. A trace automaton for these two processescan be one that allows any number of transitions of the �rst process followed by anynumber of transitions of the second process. This is is �ne for �nite computations, butfor in�nite computations, one will be left with either an in�nite computation of the �rstprocess or one of the second process, but not an in�nite computation of both processes.One can summarize this by saying that AR represents the in�nite computations of allprocesses, but not the joint in�nite computations of unsynchronized processes [GW91a].Trace automata do not adequately represent the !-computations of the componentsfrom which they are built because in�nite computations cannot be concatenated. Ac-tually, with the help of a little abstraction, in�nite computations could very well beconcatenated. One can simply think of computations whose length is an ordinal largerthan !. This idea has been investigated in [GW91a, GW94]. Precisely, automata operat-ing on words of length !� n, n 2 !, were de�ned and studied. It was shown that, whenthey are viewed as !�n-automata, trace automata can be used for model checking withfairness assumptions. However, it is necessary to use a new model-checking algorithm,that checks for sequences of strongly connected components in trace automata.Instead of using trace automata and a new, more complicated, model-checking algo-

www.manaraa.com

7.4. MODEL CHECKING WITH FAIRNESS ASSUMPTIONS 107rithm, another solution consists in using an additional proviso during state-space explo-ration that ensures that enough states and transitions are preserved in the reduced statespace AR to make possible the use of classical model-checking algorithms on AR. This isthe approach adopted in [Pel93, Pel94], where a proviso is given for model-checking withfairness assumptions. This proviso forces the traversal of \fair cycles" by preventing theselective search to close cycles except from states from which all enabled transitions areexecuted. This proviso increases the size of the reduced state space that is explored, butis easy to implement.

www.manaraa.com

108 CHAPTER 7. MODEL CHECKING

www.manaraa.com

Chapter 8Experiments
8.1 How Can Partial-Order Methods Be Evaluated?How much can one gain by using the methods described in this thesis? It is very dif-�cult to give a general answer. Indeed, one can quite easily construct families of sys-tems for which nothing is gained whatsoever. Examples of such systems are systemswhere the coupling between the processes is so tight that two independent transitionsare never simultaneously enabled. (The system is in fact purely sequential.) In this case,partial-order methods yield no reduction, and the selective search becomes equivalent toa classical exhaustive search.On the other hand, it is also easy to construct systems for which the growth of the statespace when the number of processes in the system increases is reduced from exponential topolynomial by a selective search. This is the case, for instance, for the dining-philosopherssystem of Section 2.3. The number of states in the global state space AG and in thereduced state space AR explored by a selective search using persistent sets and sleep sets(without proviso) are given in Figure 8.1 for various numbers of philosophers (logarithmicscale).Going one step further, it is also easy to �nd examples of systems for which the globalstate space increases in size when the value of some parameter grows, while the reducedstate space remains the same. For instance, consider the following \producer-consumer"example.Example 8.1 Consider a system containing a process \producer" P = fp0g and a pro-cess \consumer" C = fc0g, an object \bounded FIFO channel" of size N = 1000, denotedq, as considered in Examples 3.20 and 4.29, and two transitionst1 = (p0; Not(Full(q)); Send(q;m); p0), t2 = (c0; Not(Empty(q)); Receive(q); c0);109

www.manaraa.com

110 CHAPTER 8. EXPERIMENTS

110
1001000100001000001e+06

2 4 6 8 10 12Philosophers

ARAGStates

Figure 8.1: Reduction due to partial-order methods for dining philosopherswhere it is assumed that Send(q;m) denotes a command that performs a Send operationon the object q with m as input, Receive(q) denotes a command that performs a Receiveoperation on the object q (the output of the Receive operation on q is discarded here),Full(q) denotes a boolean condition equivalent to the value returned by the executionof a Full operation on object q, and Empty(q) denotes a boolean condition equivalentto the value returned by the execution of an Empty operation on object q. Let s0 =(p0; c0; ()) 2 P�C�Vq be the initial state of the producer-consumer system (q is initiallyempty). Let us investigate what the reduced state space AR explored by a selective searchusing persistent sets could be. In state s0, only transition t1 is enabled. After executingthis transition, state s1 = (p0; c0; (m)) is reached. In state s1, both transitions t1 and t2are enabled. Moreover, the set ft2g is a persistent set in s1. After executing t2 from s1,state s0 is reached again, and the exploration of AR stops. This reduced state space ARis shown in Figure 8.2. Dotted transitions are not in AR. Clearly, AR is independent ofthe value of N , while the size of AG is proportional to N . If N =1, i.e., if the channel(bu�er) is unbounded, AR is �nite, while the global state space AG is in�nite.Clearly, by a biased choice of examples, an arbitrarily exaggerated impression of theimprovements could thus be suggested. For instance, by setting the number of philoso-phers to a su�ciently large number, we can claim that we can check systems with astro-

www.manaraa.com

8.2. A PARTIAL-ORDER PACKAGE FOR SPIN 111
(p0; c0; ()) (p0; c0; (m)) (p0; c0; (mm))t1

t2 t2
t1

Figure 8.2: Reduced state space for the producer-consumer problemnomical numbers of states, like 1020 states, as is done in [BCM+90]. With the producer-consumer example, we can even claim to be able to check systems with in�nite numbersof states. Of course, this should be taken with a grain of salt since the fact that checkingonly a small part of such enormous state spaces is su�cient only indicates that most ofthe states in the global state space are uninteresting. This observation leads us to thefollowing conclusion: the number of states in the global state space of a system does notgive a good measure of its complexity.Along the same line of thought, the study of the asymptotic behavior of the functiongiving the number of states for di�erent numbers of processes in a system is only oflimited practical interest. Indeed, state-space exploration techniques are rarely used toverify systems composed of tens of identical processes. For such systems, it is preferableto use other veri�cation techniques specially tailored for proving properties of systemswith unde�ned numbers of participants (e.g., [KM89, WL89]).Consequently, experiments with realistic examples, including industrial-size ones, ap-pear to be the most informative approach to evaluating partial-order veri�cation methods.8.2 A Partial-Order Package for SPINIn order to perform experiments on complex concurrent systems, we have implemented(most of) the algorithms presented in the previous Chapters in an add-on package forthe protocol veri�cation system SPIN.SPIN is an automated veri�cation system for communication protocols described inthe Promela language [Hol91]. Promela is a full nondeterministic guarded-commandlanguage. Promela de�nes systems of asynchronously executing concurrent processes thatcan interact via shared variables and message channels. Interaction via message channelscan be either synchronous (i.e., by rendez-vous) or asynchronous (bu�ered) with arbitrary

www.manaraa.com

112 CHAPTER 8. EXPERIMENTS(user-speci�ed) bu�er capacities, and arbitrary numbers of message parameters. Thesedi�erent types of communication can be combined. Given a concurrent system describedby a Promela program, SPIN can verify properties of the system by performing a classicaldepth-�rst search in the global state space of the system. By default, SPIN checks fordeadlocks, dead code, and violations of user-speci�ed assertions (cf. Chapter 6).The partial-order package we have developed for SPIN checks by default the sameproperties as SPIN does, i.e., it checks for deadlocks, dead code, and violations of user-speci�ed assertions. These properties are checked by exploring only a trace automatonfor the system being analyzed, instead of its global state space. The partial-order pack-age includes the implementation of a selective search using persistent sets, sleep sets,and the proviso of De�nition 6.2, as shown in Figure 6.2. For computing persistent sets,an algorithm similar to Algorithm 2 using the >s relation presented in Chapter 4 hasbeen chosen to be implemented. Indeed, we showed in Chapter 4 that there is no \best"algorithm for computing persistent sets. For the class of examples we have considered, itturns out that Algorithm 2 provides a good trade-o� between the complexity of the algo-rithm, its additional run-time expense, and the reduction it can yield (see next Section).The proviso of De�nition 6.2 has been chosen to be implemented in the partial-orderpackage because of its simplicity, its e�ciency (see next Section), and its compatibilitywith sleep sets (and with the state-space caching technique considered in Section 8.4).(The veri�cation of liveness properties is not supported by the current version of thepackage.)A few minor changes to the Promela language have been made in order to make sys-tems described in Promela compatible with the assumptions under which the algorithmsof this thesis have been developed. For instance, process creation has been forbidden,and the use of the \atomic" Promela expression has been de�ned more strictly. Promelahas also been extended with two predicates Empty and Full on FIFO channels, for whichoptimizations are implemented in the Package (cf. Chapters 3 and 4).Our partial-order package is available free of charge for educational and research pur-poses by anonymous ftp from ftp.monte�ore.ulg.ac.be in the /pub/po-package directory.More information on the partial-order package can be found in the README �le in thisdirectory.8.3 EvaluationThe partial-order package has been tested on various realistic examples of protocols1. Theaim of these experiments was to determine the type of reduction that can be expected1We wish to thank Gerard Holzmann for providing us with several of these examples.

www.manaraa.com

8.3. EVALUATION 113on real protocol examples when using the algorithms presented in this thesis, and toevaluate the respective impact of these algorithms on the reduction obtained. In thisSection, results obtained with four sample protocols are detailed.� PFTP is a �le transfer protocol presented in Chapter 14 of [Hol91], modeled in 206lines of Promela. It consists of three processes communicating via FIFO channels.� MULOG3 is a model of a mutual exclusion algorithm presented in [TN87], for 3participants, modeled in 97 lines of Promela. It consists of six processes communi-cating via FIFO channels and shared variables.� ABRA is a model of the Abracadabra protocol presented in [Tur93], modeled in 168lines of Promela. It consists of four processes communicating via FIFO channels.� DTP is a data transfer protocol, modeled in 406 lines of PROMELA. It consists ofthree processes communicating via FIFO channels.Experiments were performed using six di�erent algorithms.� DFS denotes a classical search, as shown in Figure 2.1, performed in a depth-�rstorder.� SLEEP denotes a selective search using sleep sets alone, as considered in Theo-rem 5.4 (equivalent to the algorithm of Figure 5.2 when the function Persistent Setreturns the set of all enabled transitions).� PS denotes a persistent-set selective search, as shown in Figure 4.1.� PS+SLEEP denotes a selective search using persistent sets and sleep sets, as shownin Figure 5.2.� PS+PROV denotes a selective search using persistent sets and the proviso of De�-nition 6.2.� PS+SLEEP+PROV denotes a selective search using persistent sets, sleep sets andthe proviso of De�nition 6.2, as shown in Figure 6.2.All these algorithms can be viewed as particular cases of the general selective-searchalgorithm using persistent sets, sleep sets and the proviso, i.e., PS+SLEEP+PROV. Theycan be obtained in our partial-order package by turning o� the use of persistent sets, sleepsets, and/or the proviso. This is done by using appropriate options at compile-time (thereis no run-time overhead due to turning o� some partial-order methods). For instance,DFS corresponds to a selective-search where all partial-order methods are turned o�.

www.manaraa.com

114 CHAPTER 8. EXPERIMENTSNote that DFS is, on average, two times slower than the original version of SPIN. This isdue to the fact that parts of the original code of SPIN had to be modi�ed and re-writtenin order to connect the partial-order selective-search algorithms to the rest of the tool.The new code has not been optimized.Results of these experiments are presented in Table 8.1. All experiments were per-formed on a SPARC2 workstation with 64 Megabytes of RAM, using the Partial-OrderPackage version 3.0. For each run, the numbers of visited states and traversed transitionsare given. Time (in seconds) is user time plus system time as reported by the UNIX-system time command. All visited states are stored in a hash table. To avoid signi�cantrun-time penalties for disk-access, visited states can only be stored in randomly accessedmemory, i.e., in the main memory available in the computer on which the experiments areperformed. Consequently, parameter settings in all the protocols considered were chosento produce global state spaces that can easily be stored in 64 Megabytes of RAM. Foreach run, the amount of memory used is directly proportional to the number of storedstates. Indeed, transitions are not stored in memory. Moreover, when using sleep sets,the amount of memory used for storing sleep sets is insigni�cant with respect to theoverall memory requirements of the selective search, since a handful of bytes su�ces torepresent one sleep set for these examples (there are at most a handful of enabled tran-sitions in each state), while more than one hundred bytes are used to represent one state(each state is composed of the current local state of all processes, all current variablevalues, and all current message-channel contents).From the numbers given in Table 8.1, three main observations can be made concerningthe respective impact of persistent sets, sleep sets, and the proviso of De�nition 6.2 onthe reduction obtained.� Persistent Sets yield the most important reductions on the number of visited states.They can also yield good reductions on the number of explored transitions.� Sleep sets yield a less impressive reduction on the number of visited states, but yieldvery good reductions on the number of explored transitions.� Using the proviso of De�nition 6.2 usually does not yield an important increase ofthe number of visited states and transitions.The last observation shows that the proviso of De�nition 6.2 is an e�cient solution forverifying safety properties using partial-order methods.As predicted by Theorem 5.4, SLEEP does not yield any reduction on the number ofvisited states with respect to DFS. For all protocols, the best reductions can be obtainedwith PS+SLEEP, i.e., by using simultaneously persistent sets and sleep sets. Using

www.manaraa.com

8.3. EVALUATION 115

Protocol Algorithm Stored States Transitions TimePFTP DFS 446,982 1,257,317 478.2SLEEP 446,982 622,364 639PS 276,722 482,722 662.7PS+SLEEP 249,994 351,633 684.7PS+PROV 279,808 490,228 673.8PS+SLEEP+PROV 250,514 352,371 690.1MULOG3 DFS 38,181 111,668 25.3SLEEP 38,181 38,241 30.5PS 18,537 38,906 25.8PS+SLEEP 17,984 18,057 26PS+PROV 18,537 38,906 26PS+SLEEP+PROV 17,984 18,057 26.4ABRA DFS 149,816 372,010 494.2SLEEP 149,816 176,469 546PS 32,289 40,931 166.3PS+SLEEP 27,781 34,381 155.7PS+PROV 40,472 52,355 204.3PS+SLEEP+PROV 36,913 46,934 204.4DTP DFS 251,409 648,467 200.2SLEEP 251,409 269,912 189PS 9,904 10,351 11.3PS+SLEEP 9,904 10,351 11.5PS+PROV 9,904 10,351 11.4PS+SLEEP+PROV 9,904 10,351 11.7Table 8.1: Evaluation

www.manaraa.com

116 CHAPTER 8. EXPERIMENTSpersistent sets and sleep sets gives better reductions than using persistent sets alone inalmost all cases. For DTP, persistent sets are so good in reducing the number of statesand transitions that sleep sets are not able to improve this result (cf. the discussion ofSection 5.3.1).These results show that using the partial-order methods developed in this thesis isbasically a no-risk improvement. In the worst case, when the reduction is not su�cientto make up the additional run time overhead (PFTP), the selective search can be slightlyslower than a classical search, but the overall time complexity remains linear in thenumber of explored transitions.Moreover, using partial-order methods can strongly decrease both the time and thememory resources needed to verify properties of concurrent systems (DTP). Therefore,they can be used to verify more complex protocols.8.4 State-Space CachingAnother observation that can be made from the results given in Table 8.1 is the following:when using partial-order methods, and especially when using sleep sets, the number ofstate matchings, i.e., the number of visited transitions minus the number of visited states,strongly decreases. This phenomenon was already pointed out in Section 5.3.2, and canbe explained as follows.When performing a classical search (like DFS), almost all states in the state space ofa concurrent system are typically visited several times. There are two causes for this:1. From the initial state, the explorations of all interleavings of a single �nite concur-rent execution of the system always lead to the same state. This state will thus bevisited several times because of all these interleavings.2. From the initial state, explorations of di�erent �nite concurrent executions maylead to the same state.When using partial-order methods, and especially when using sleep sets, most of thee�ects of the �rst cause given above can be avoided, and, in many cases, most of thestates are visited only once during the selective search.States that are visited only once do not need to be stored in memory. Indeed, theonly reason why visited states are stored in memory is to avoid redundant explorationsof parts of the state space: when a state that has already been visited is visited againlater during the search, it is not necessary to revisit all its successors. Unfortunately, it isimpossible to determine which states are visited only once before the search is completed.

www.manaraa.com

8.4. STATE-SPACE CACHING 117However, if most of the states are visited only once, the probability that a state will bevisited again later during the search is very small, and the risk of double work when notstoring an already visited state becomes very small as well. This enables one not to storemost of the states that have already been visited without incurring too much redundantexplorations of parts of the state space. The memory requirements can thus stronglydecrease without seriously increasing the time requirements.State-space caching [Hol85, JJ91] is a memory management technique for storing thestates encountered during a depth-�rst search that consists in storing all the states of thecurrent explored path (i.e., those in the current depth-�rst search \stack") plus as manyother states as possible given the remaining amount of available memory. It thus createsa restricted cache of selected system states that have already been visited. Initially, allstates encountered are stored into the cache. When the cache �lls up, old states that arenot in the stack are removed from the cache to accommodate new ones. This methodnever tries to store more states than possible in the cache. Thus, if the size of the cacheis greater than the maximal size of the stack during the exploration, the search is nottruncated, and eventually terminates.We have implemented such a caching discipline in the partial-order package. Thecaching discipline can be used with any of the selective-search algorithms that wereconsidered in the previous Section. Results of experiments with di�erent cache sizes andthe algorithms DFS, PS, and PS+SLEEP for the MULOG3 protocol are presented inFigure 8.3. For each run, the run time is directly proportional to the number of exploredtransitions.With DFS, these results clearly show that the size of the cache, i.e., the number ofstored states, can be reduced to approximately the third of the total number of states inAG without seriously a�ecting the number of explored transitions and hence the run time.If the cache is further reduced, the run time increases dramatically, due to redundantexplorations of large parts of the state space. This run-time explosion makes state-spacecaching ine�cient under a certain threshold.With PS, this threshold can be reduced to approximately the eighth of the totalnumber of states. This improvement is not very spectacular because the number ofmatched states, even when using PS, is still too important (see Table 8.1). The riskof double work when reaching an already visited state that has been removed from thecache is not reduced enough.With PS+SLEEP, the situation is di�erent: there is no run-time explosion anymore.Indeed, the number of matched states is reduced so much (see Table 8.1) that the riskof double work becomes very small. When the cache size is reduced up to the maximaldepth of the search (this maximal depth is the lower bound for the cache size since all

www.manaraa.com

118 CHAPTER 8. EXPERIMENTS

02000004000006000008000001e+061.2e+06

0 5000 10000 15000 20000 25000 30000 35000 40000Stored states

DFSPSPS + SLEEP
Transitions

Figure 8.3: Performances of state-space caching for MULOG3states of the stack are stored to ensure the termination of the search), the increase ofthe number of explored transitions is still less than 10% with respect to the number oftransitions explored by PS+SLEEP when all visited states are stored in memory, i.e.,without using state-space caching.In other words, the MULOG3 protocol, which has 38,181 reachable states that can bevisited by DFS in 25 seconds (see Table 8.1), can be analyzed with the same run time byusing PS+SLEEP and state-space caching while storing no more than 150 states. Thememory requirements are reduced by a factor of 200 while the run time remains the same.Of course, the practical interest of this result is that using partial-order methods andstate-space caching together makes possible the complete exploration of very large statespaces, that could not be explored so far.For instance, consider two other versions of the MULOG protocol, denoted MULOG4and MULOG5, with respectively four and �ve participants. Let PS+SLEEP+Cachingdenote a selective search using persistent sets, sleep sets, and state-space caching. Ta-bles 8.2 and 8.3 present results of experiments performed on MULOG4 and MULOG5with the algorithms DFS, PS+SLEEP, and PS+SLEEP+Caching. \Stored states" is thenumber of stored states at the end of the search. When state-space caching is used, the

www.manaraa.com

8.4. STATE-SPACE CACHING 119
Algorithm Stored St. Cleared St. Matched St. Transitions TimeDFS { { { { {PS+SLEEP 654,600 0 6,189 660,789 986.4(2516.7)PS+SLEEP+Caching 300,000 354,676 6,198 660,874 1122.6(1184.4)Table 8.2: Veri�cation of MULOG4Algorithm Stored St. Cleared St. Matched St. Transitions TimeDFS { { { { {PS+SLEEP { { { { {PS+SLEEP+Caching 300,000 28,613,162 349,904 29,263,066 60,633.1Table 8.3: Veri�cation of MULOG5maximum number of stored states, i.e., the size of the cache, is limited to 300,000 states.(This number is approximately the maximum number of states that can be stored inRAM for MULOG4 and MULOG5 while still avoiding any paging.) \Cleared states"is the number of times a state was removed from the cache. \Matched states" is thenumber of state matchings that occurred during the search.For MULOG4, DFS was not able to complete its search, since its global state space istoo large to be stored in (64 Megabytes of) memory. Using state-space caching with DFSdoes not help, because of the run time explosion mentioned above. MULOG4 can stillbe veri�ed using PS+SLEEP, even without state-space caching. Real time as reportedby the UNIX-system time command is given between parentheses below the run time(user time plus system time). The important di�erence between these two numbers forPS+SLEEP is due to paging (storing 654,600 states of MULOG4 requires more than 64Megabytes of RAM, so some of them had to be stored on disk).For MULOG5, the only algorithm that is able to completely verify the correctness ofthis protocol is PS+SLEEP+Caching. The complete selective search takes approximately17 hours, and explores 29,263,066 transitions. This means that the reduced state spaceAR explored by PS+SLEEP contains at most 29,263,066 states. The size of the globalstate space AG of MULOG5 is not known, but is very likely several orders of magnitudelarger than the largest state spaces that can be explored by other existing veri�cationtools.

www.manaraa.com

120 CHAPTER 8. EXPERIMENTSNote that the e�ciency of the state-space caching technique can be dynamically esti-mated during the search: if the maximum stack size remains acceptable with respect tothe cache size and if the proportion of matched states remains small enough, the run-timeexplosion will likely be avoided. Else one cannot predict if the cache size is large enoughto avoid the run-time explosion.8.5 ConclusionUsing partial-order methods is basically a no-risk improvement with respect to a classicalexhaustive search in the state space of the system being analyzed. Moreover, partial-order methods can yield substantial improvements in the performances of the veri�cation.Therefore, these methods broaden the applicability of state-space exploration techniquesto more complex systems.The reduction obtained depends on the coupling between the processes in the system.When the coupling is very tight, partial-order methods yield no reduction, and the se-lective search becomes equivalent to a classical exhaustive search. When the couplingbetween the processes is very loose, the reduction can be very impressive. For mostrealistic examples, partial-order methods provide a signi�cant reduction of the memoryand time requirements needed to verify protocols.It is worth noticing that partial-order methods can already yield good performanceimprovements for verifying systems containing only a handful of processes. It is notnecessary to consider systems composed of tens of processes to obtain spectacular reduc-tions. To put it in another way, the part of the state explosion due to the explorationof all possible interleavings of independent transitions can already be very important forsystems containing only a few processes, and partial-order methods are able to get rid ofmost of this explosion.This very important point emphasizes the practical signi�cance of partial-order meth-ods. Indeed, most of the protocol models that are analyzed with state-space explorationtechniques typically contain only a handful of processes. The examples we have con-sidered in Section 8.3 re
ect this reality. For instance, a typical protocol example, asillustrated in Figure 8.4, is usually composed of a few processes that communicate asyn-chronously by exchanging messages through some communication medium, each processbeing described by a long piece of sequential code, with complex interactions betweencontrol and data.Not only these systems are very frequent, but they are also very hard to verify: theyare complex (several hundreds lines of (Promela) code are needed to model these sys-tems), and their state spaces are highly irregular. Speci�cally, their state spaces seem

www.manaraa.com

8.5. CONCLUSION 121

Figure 8.4: Typical protocol exampleto be much more irregular than, for instance, those of systems composed of many iden-tical processes (or pieces of hardware), for which symbolic veri�cation techniques areable to capture the regularity of the state space with the guidance of the user (see,e.g., [BCM+90]). In contrast, for examples of the type we are considering here, existingsymbolic veri�cation techniques turned out to be inferior to classical state-space explo-ration algorithms [HD93]. Consequently, for this particular, though important, class ofsystems, partial-order methods are one of the most successful approaches to tackle thestate explosion arising during the analysis of such systems.For other types of systems, it is not known how competitive partial-order methods are.For instance, it is claimed in [McM92] that partial-order methods like those presented inthis thesis would not give good reductions for asynchronous circuit models, \because ofthe ubiquity of confusion in such models." This argument is not su�cient to justify sucha claim. Indeed, it should be proved, for instance, that for all systems in a speci�c classof concurrent systems (left to be de�ned), for all states s in the global state spaces ofthese systems, the only persistent set in s is the set of all transitions enabled in s. Then,indeed, by Theorem 5.4, the algorithms considered in this thesis will visit all reachablestates of such systems (though not necessarily all transitions in their state spaces), andyield no reduction in the number of visited states. However, without such a proof (aprecise characterization of such a class of systems is not given in [McM92]), and withoutany experimental result validating this claim, the problem is still open.Finally, we have shown in this Chapter that using partial-order methods, and espe-cially using sleep sets, can substantially improve the state-space caching discipline bygetting rid of the main cause of its previous ine�ciency, namely prohibitive state match-ing due to the exploration of all possible interleavings of concurrent executions all leading

www.manaraa.com

122 CHAPTER 8. EXPERIMENTSto the same state. Thanks to sleep sets, the memory requirements needed to verify largereduced state spaces can be strongly decreased (several orders of magnitude) without se-riously a�ecting the time requirements. This makes possible the complete exploration ofvery large reduced state spaces (several tens of million states) in a reasonable time (onenight). Used together, partial-order methods and state-space caching signi�cantly pushback the limits of veri�cation by state-space exploration.

www.manaraa.com

Chapter 9Conclusions
9.1 SummaryWe have built, from the ground up, an original approach to cope with the state-explosionproblem that arises during the veri�cation of concurrent systems by classical state-spaceexploration techniques. Speci�cally, our approach tackles one cause of the state-explosionproblem: the modeling of concurrency by interleaving. Indeed, all interleavings of allconcurrent transitions of a system are represented in its state space. We showed thatexploring all these interleavings is not necessary for veri�cation.The focus of the thesis has been on developing practical and e�cient selective-searchalgorithms for exploring only a reduced part of the state space of a concurrent system thatis su�cient for checking given properties of this system. The algorithms we have presentedrely on the concept of independency and the properties it implies. They take advantageof the independency between transitions to avoid exploring all their interleavings. Theinterleavings of a partial-order execution were related by the notion of Mazurkiewicz'strace. Traces proved to be a powerful and elegant vehicle to carry out the correctnessproofs of our algorithms. Several ways to detect independency in concurrent systemswere discussed and illustrated using a general model for representing concurrent systems.Two compatible techniques for determining the transitions that need to be explored ina selective search were developed: persistent sets and sleep sets. Persistent sets were in-troduced to provide an abstract characterization of a whole family of existing algorithms.All these algorithms were shown to compute persistent sets, and were precisely comparedwith each other. Then it was shown how all the previous algorithms can be improved byusing a new relation that models interactions between transitions more �nely than theexisting relations. The notion of conditional stubborn set was introduced, and all theconsidered algorithms were shown to be approximations of conditional stubborn sets.123

www.manaraa.com

124 CHAPTER 9. CONCLUSIONSThe second main algorithmic technique developed in this thesis is the sleep set tech-nique. We have described how to combine sleep sets with persistent sets, and have studiedthe properties of sleep sets. Results of experiments with real protocol examples show thatnot only persistent sets and sleep sets are compatible, but they are also complementary.A simple modi�cation of a selective-search algorithm that can be used for checkingthe reachability of local states, and, more generally, for checking any safety property, waspresented. The modi�cation consists in enforcing a simple additional proviso that ensuresthat the choices between enabled independent transitions made during the selective searchare not completely unfair with respect to some processes. The notion of trace automatonwas shown to characterize the joint e�ect of using persistent sets and sleep sets for theveri�cation of safety properties.The veri�cation of liveness properties and, more generally, the model-checking prob-lem for linear-time temporal-logic were then addressed. Techniques for solving theseproblems were discussed and compared. It was also shown how the proposed techniquescomplement each other.The algorithms developed in the thesis have been implemented in an add-on packagefor the protocol veri�cation system SPIN. This partial-order package has been testedon a large set of protocol examples, including the four sample examples detailed in theprevious Chapter. Results of experiments show that using the partial-order methods wehave developed is basically a no-risk improvement with respect to a classical exhaustivesearch in the state space of the system being analyzed. Moreover, partial-order methodscan yield substantial improvements in the performances of the veri�cation. The improve-ment obtained depends on the coupling between the processes in the system. When thecoupling is very tight, partial-order methods yield no reduction, and the selective searchbecomes equivalent to a classical exhaustive search. When the coupling between the pro-cesses is very loose, the reduction in the number of explored states and transitions can bevery impressive. For most realistic examples, partial-order methods provide a signi�cantreduction of the memory and time requirements needed to verify protocols.Finally, we have shown that using partial-order methods, and especially using sleepsets, can substantially improve the state-space caching discipline by getting rid of themain cause of its previous ine�ciency, namely prohibitive state matching due to theexploration of all possible interleavings of concurrent executions all leading to the samestate. Used together, partial-order methods and state-space caching signi�cantly broadenthe applicability of veri�cation by state-space exploration.

www.manaraa.com

9.2. FUTURE WORK 1259.2 Future WorkThis section indicates some directions for future research.Tackling other causes of state explosionIn real protocols, the modeling of concurrency by interleaving is only but one cause ofthe state explosion that creeps in during veri�cation by state-space exploration. Devel-oping techniques to tackle the other causes of state explosion (e.g., variables whose valuesrange over a large domain, communication channels that contain many di�erent types ofmessages, etc.), and combining them with partial-order methods is certainly worthwhile.Simultaneously attacking the di�erent causes of state-explosion should substantially im-prove the e�ciency and the applicability of automatic veri�cation tools.Verifying other propertiesSo far, partial-order methods have been developed for deadlock detection, for the veri�ca-tion of safety properties, and for linear-time temporal-logic model checking. These threetypes of properties cover most of the properties of concurrent reactive systems one wouldever wish to verify in practice. It is nevertheless interesting to study how partial-ordermethods can be adapted for checking other types of properties, like properties expressedin branching-time temporal logic or in partial-order temporal logic. A �rst step in thisdirection is presented in [GKPP94].Another area for further research is the veri�cation of \real-time" systems, i.e., systemswhose descriptions involve a quantitative notion of time. Investigations in this directionhave started recently with [YSSC93] where a veri�cation technique for real-time systemsusing partial-order methods is presented.Other applicationsState explosion is a long-standing problem, which is central to many applications in com-puter science. Any method that can tackle this problem in a neat way is of great promise,not only for veri�cation but also for several other applications. We believe partial-ordermethods may be useful for solving other problems than veri�cation. Actually, any prob-lem that can be reduced to a state-space exploration problem and where some form ofindependency (commutativity) can be identi�ed is a potential target for partial-ordermethods. An example of such an application is planning [GK91]. Several other researchtopics of this nature are also possible.

www.manaraa.com

126 CHAPTER 9. CONCLUSIONS

www.manaraa.com

Bibliography
[ACW90] S. Aggarwal, C. Courcoubetis, and P. Wolper. Adding liveness properties tocoupled �nite-state machines. ACM Transactions on Programming Languagesand Systems, 12(2):303{339, 1990.[AFdR80] K. R. Apt, N. Francez, and W. P. de Roever. A proof system for communi-cating sequential processes. ACM Transactions on Programming Languagesand Systems, 2:359{385, 1980.[AHU74] Alfred V. Aho, John E. Hopcroft, and Je�rey D. Ullman. The Design andAnalysis of Computer Algorithms. Addison-Wesley, 1974.[AS87] B. Alpern and F. B. Schneider. Recognizing safety and liveness. DistributedComputing, 2:117{126, 1987.[BCM+90] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolicmodel checking: 1020 states and beyond. In Proceedings of the 5th Symposiumon Logic in Computer Science, pages 428{439, Philadelphia, June 1990.[B�uc62] J.R. B�uchi. On a decision method in restricted second order arithmetic.In Proc. Internat. Congr. Logic, Method and Philos. Sci. 1960, pages 1{12,Stanford, 1962. Stanford University Press.[CES86] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic veri�cation of �nite-state concurrent systems using temporal logic speci�cations. ACM Transac-tions on Programming Languages and Systems, 8(2):244{263, January 1986.[CM88] K. M. Chandy and J. Misra. Parallel Program Design: A Foundation.Addison-Wesley, 1988.[DDHY92] D. L. Dill, A. J. Drexler, A. J. Hu, and C. H. Yang. Protocol veri�cation asa hardware design aid. In 1992 IEEE International Conference on ComputerDesign: VLSI in Computers and Processors, pages 522{525, Cambridge, MA,October 1992. IEEE Computer Society.127

www.manaraa.com

128 BIBLIOGRAPHY[Dij76] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.[EF82] T. Elrad and N. Francez. Decomposition of distributed programs into commu-nication closed layers. Science of Computer Programming, 2:155{173, 1982.[Esp92] J. Esparza. Model checking using net unfoldings. Hildesheimer Informatik-berichte 14/92, Univeristy of Hildesheim, 1992.[FGM+92] J.C. Fernandez, H. Garavel, L. Mounier, A. Rasse, C. Rodriguez, andJ. Sifakis. A toolbox for the veri�cation of lotos programs. In Proc. of the14th International Conference on Software Engineering ICSE'14, Melbourne,Australia, May 1992. ACM.[Fra86] N. Francez. Fairness. Springer-Verlag, 1986.[GH85] M. G. Gouda and J. Y. Han. Protocol validation by fair progress state explo-ration. Computer Networks and ISDN systems, pages 353{361, May 1985.[GH93] P. Godefroid and G. J. Holzmann. On the veri�cation of temporal properties.In Proc. 13th IFIP WG 6.1 International Symposium on Protocol Speci�-cation, Testing, and Veri�cation, pages 109{124, Li�ege, May 1993. North-Holland.[GHP92] P. Godefroid, G. J. Holzmann, and D. Pirottin. State space caching revisited.In Proc. 4th Workshop on Computer Aided Veri�cation, volume 663 of LectureNotes in Computer Science, pages 178{191, Montreal, June 1992. Springer-Verlag.[GK91] P. Godefroid and F. Kabanza. An e�cient reactive planner for synthesiz-ing reactive plans. In Proceedings of AAAI-91, volume 2, pages 640{645,Anaheim, July 1991.[GKPP94] R. Gerth, R. Kuiper, D. Peled, and W. Penczek. A partial order approach tobranching time model checking. To appear in the Proceedings of the ThirdIsrael Symposium on Theory of Computing and Systems, 1994.[God90] P. Godefroid. Using partial orders to improve automatic veri�cation meth-ods. In Proc. 2nd Workshop on Computer Aided Veri�cation, volume 531of Lecture Notes in Computer Science, pages 176{185, Rutgers, June 1990.Springer-Verlag. Extended version in ACM/AMS DIMACS Series, volume 3,pages 321{340, 1991.

www.manaraa.com

BIBLIOGRAPHY 129[GP93] P. Godefroid and D. Pirottin. Re�ning dependencies improves partial-orderveri�cation methods. In Proc. 5th Conference on Computer Aided Veri�-cation, volume 697 of Lecture Notes in Computer Science, pages 438{449,Elounda, June 1993. Springer-Verlag.[Gri90] E. P. Gribomont. A programming logic for formal concurrent systems. InProc. CONCUR'90, volume 458 of Lecture Notes in Computer Science, pages298{313. Springer-Verlag, 1990.[Gri93] E. P. Gribomont. Concurrency without toil: a systematic method for parallelprogram design. Science of Computer Programming, 21:1{56, 1993.[GW91a] P. Godefroid and P. Wolper. A partial approach to model checking. InProceedings of the 6th IEEE Symposium on Logic in Computer Science, pages406{415, Amsterdam, July 1991.[GW91b] P. Godefroid and P. Wolper. Using partial orders for the e�cient veri�cation ofdeadlock freedom and safety properties. In Proc. 3rd Workshop on ComputerAided Veri�cation, volume 575 of Lecture Notes in Computer Science, pages332{342, Aalborg, July 1991.[GW93] P. Godefroid and P. Wolper. Using partial orders for the e�cient veri�cationof deadlock freedom and safety properties. Formal Methods in System Design,2(2):149{164, April 1993.[GW94] P. Godefroid and P. Wolper. A partial approach to model checking. Infor-mation and Computation, 110(2):305{326, May 1994.[HD93] A. J. Hu and D. L. Dill. E�cient veri�cation with bdds using implicitlyconjoined invariants. In Proc. 5th Conference on Computer Aided Veri�cation,volume 697 of Lecture Notes in Computer Science, pages 3{14, Elounda, June1993. Springer-Verlag.[HGP92] G. J. Holzmann, P. Godefroid, and D. Pirottin. Coverage preserving reductionstrategies for reachability analysis. In Proc. 12th IFIP WG 6.1 InternationalSymposium on Protocol Speci�cation, Testing, and Veri�cation, pages 349{363, Lake Buena Vista, Florida, June 1992. North-Holland.[HK90] Z. Har'El and R. P. Kurshan. Software for analytical development of com-munication protocols. AT&T Technical Journal, 1990.[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

www.manaraa.com

130 BIBLIOGRAPHY[Hol85] G. J. Holzmann. Tracing protocols. AT&T Technical Journal, 64(12):2413{2434, 1985.[Hol87] G. J. Holzmann. Automated protocol validation in argos | assertion provingand scatter searching. IEEE Trans. on Software Engineering, 13(6):683{696,1987.[Hol91] G. J. Holzmann. Design and Validation of Computer Protocols. Prentice Hall,1991.[JJ91] C. Jard and Th. Jeron. Bounded-memory algorithms for veri�cation on-the-
y. In Proc. 3rd Workshop on Computer Aided Veri�cation, volume 575 ofLecture Notes in Computer Science, Aalborg, July 1991. Springer-Verlag.[JK90] R. Janicki and M. Koutny. On some implementation of optimal simulations.In Proc. 2nd Workshop on Computer Aided Veri�cation, volume 531 of Lec-ture Notes in Computer Science, pages 166{175, Rutgers, June 1990. Springer-Verlag.[JZ93] W. Janssen and J. Zwiers. Specifying and proving communication closednessin protocols. In Proc. 13th IFIP WG 6.1 International Symposium on Proto-col Speci�cation, Testing, and Veri�cation, pages 323{339, Li�ege, May 1993.North-Holland.[KM89] R. P. Kurshan and K. McMillan. A structural induction theorem for processes.In Proceedings of the Eigth ACM Symposium on Principles of DistributedComputing, pages 239{248, Edmonton, Alberta, August 1989.[KP86] Y. Kornatzky and S. S. Pinter. A model checker for partial order temporallogic. EE PUB 597, Department of Electrical Enginering, Technion-IsraelInstitute of Technology, 1986.[KP87] S. Katz and D. Peled. Interleaving set temporal logic. In Proc. 6th ACMSymp. on Principles of Distributed Computing, pages 178{190, Vancouver,August 1987.[KP92a] S. Katz and D. Peled. De�ning conditional independence using collapses.Theoretical Computer Science, 101:337{359, 1992.[KP92b] S. Katz and D. Peled. Veri�cation of distributed programs using representa-tive interleaving sequences. Distributed Computing, 6:107{120, 1992.[Lam77] L. Lamport. Proving the correctness of multiprocess programs. IEEE Trans-actions on Software Engineering, SE-3(2):125{143, 1977.

www.manaraa.com

BIBLIOGRAPHY 131[Lam78] L. Lamport. Time, clocks, and the ordering of events in a distributed system.Communications of the ACM, 21(7):558{564, 1978.[Lam83] L. Lamport. What good is temporal logic? Information Processing'83, pages657{668, 1983.[Liu89] M.T. Liu. Protocol engineering. Advances in Computing, 29:79{195, 1989.[LP81] H. R. Lewis and C. H. Papadimitriou. Elements of the Theory of Computation.Prentice Hall, 1981.[LP85] O. Lichtenstein and A. Pnueli. Checking that �nite state concurrent programssatisfy their linear speci�cation. In Proceedings of the Twelfth ACM Sympo-sium on Principles of Programming Languages, pages 97{107, New Orleans,January 1985.[Maz86] A. Mazurkiewicz. Trace theory. In Petri Nets: Applications and Relationshipsto Other Models of Concurrency, Advances in Petri Nets 1986, Part II; Pro-ceedings of an Advanced Course, volume 255 of Lecture Notes in ComputerScience, pages 279{324. Springer-Verlag, 1986.[McM92] K. McMillan. Using unfolding to avoid the state explosion problem in theveri�cation of asynchronous circuits. In Proc. 4th Workshop on ComputerAided Veri�cation, volume 663 of Lecture Notes in Computer Science, pages164{177, Montreal, June 1992. Springer-Verlag.[MP92] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and ConcurrentSystems: Speci�cation. Springer-Verlag, 1992.[Ove81] W. T. Overman. Veri�cation of Concurrent Systems: Function and Timing.PhD thesis, University of California Los Angeles, 1981.[Pel93] D. Peled. All from one, one for all: on model checking using representatives. InProc. 5th Conference on Computer Aided Veri�cation, volume 697 of LectureNotes in Computer Science, pages 409{423, Elounda, June 1993. Springer-Verlag.[Pel94] D. Peled. Combining partial order reductions with on-the-
y model-checking.In Proc. 6th Conference on Computer Aided Veri�cation, volume 818 ofLecture Notes in Computer Science, pages 377{390, Stanford, June 1994.Springer-Verlag.[Pen88] W. Penczek. A temporal logic for event structures. Fundamenta Informaticae,11(3):297{326, 1988.

www.manaraa.com

132 BIBLIOGRAPHY[Pen90] W. Penczek. Proving partial order properties using cctl. Proc. Concurrencyand Compositionality Workshop, San Miniato, Italy, 1990.[Pet81] J. L. Peterson. Petri Net Theory and the Modeling of Systems. Prentice Hall,1981.[PL90] D. K. Probst and H. F. Li. Using partial-order semantics to avoid the stateexplosion problem in asynchronous systems. In Proc. 2nd Workshop on Com-puter Aided Veri�cation, volume 531 of Lecture Notes in Computer Science,pages 146{155, Rutgers, June 1990. Springer-Verlag.[Pnu85] A. Pnueli. Applications of temporal logic to the speci�cation and veri�cationof reactive systems: A survey of current trends. In Proc. Advanced School onCurrent Trends in Concurrency, volume 224 of Lecture Notes in ComputerScience, pages 510{584, Berlin, 1985. Springer-Verlag.[Pra86] V. Pratt. Modelling concurrency with partial orders. International Journalof Parallel Programming, 15(1):33{71, 1986.[PW84] S. S. Pinter and P. Wolper. A temporal logic for reasoning about partiallyordered computations. In Proc. 3rd ACM Symposium on Principles of Dis-tributed Computing, pages 28{37, Vancouver, 1984.[QS81] J.P. Quielle and J. Sifakis. Speci�cation and veri�cation of concurrent systemsin cesar. In Proc. 5th Int'l Symp. on Programming, volume 137 of LectureNotes in Computer Science, pages 337{351. Springer-Verlag, 1981.[Rei85] W. Reisig. Petri Nets: an Introduction. EATCS Monographs on TheoreticalComputer Science, Springer-Verlag, 1985.[Rud87] H. Rudin. Network protocols and tools to help produce them. Annual Reviewof Computer Science, 2:291{316, 1987.[Rud92] H. Rudin. Protocol development success stories: Part I. In Proc. 12th IFIPWG 6.1 International Symposium on Protocol Speci�cation, Testing, and Ver-i�cation, Lake Buena Vista, Florida, June 1992. North-Holland.[SdR89] F. A. Stomp and W. P. de Roever. Designing distributed algorithms by meansof formal sequentially phased reasoning. In Proc. 3rd International Workshopon Distributed Algorithms, volume 392 of Lecture Notes in Computer Science,pages 242{253, Nice, 1989. Springer-Verlag.[Sif82] J. Sifakis. A uni�ed approach for studying the properties of transition system.Theoretical Computer Science, 18:227{258, 1982.

www.manaraa.com

BIBLIOGRAPHY 133[Tar72] R. E. Tarjan. Depth-�rst search and linear graph algorithms. SIAM J. Com-puting, 1(2):146{160, 1972.[Tha89] Andr�e Thayse and et al. From Modal Logic to Deductive Databases: Intro-ducing a Logic Based Approach to Arti�cial Intelligence. Wiley, 1989.[TN87] M. Trehel and M. Naimi. Un algorithme distribu�e d'exclusion mutuelle enlog(n). Technique et Science Informatiques, pages 141{150, 1987.[Tur93] K. J. Turner et al. Using Formal Description Techniques { An Introductionto Estelle, Lotos and SDL. Wiley, 1993.[Val88a] A. Valmari. Error detection by reduced reachability graph generation. InProc. 9th International Conference on Application and Theory of Petri Nets,pages 95{112, Venice, 1988.[Val88b] A. Valmari. Heuristics for lazy state generation speeds up analysis of con-current systems. In Proc. of the Finnish Arti�cial Intelligence SymposiumSTeP-88, volume 2, pages 640{650, Helsinki, 1988.[Val90] A. Valmari. A stubborn attack on state explosion. In Proc. 2nd Workshopon Computer Aided Veri�cation, volume 531 of Lecture Notes in ComputerScience, pages 156{165, Rutgers, June 1990. Springer-Verlag.[Val91] A. Valmari. Stubborn sets for reduced state space generation. In Advancesin Petri Nets 1990, volume 483 of Lecture Notes in Computer Science, pages491{515. Springer-Verlag, 1991.[Val93] A. Valmari. On-the-
y veri�cation with stubborn sets. In Proc. 5th Confer-ence on Computer Aided Veri�cation, volume 697 of Lecture Notes in Com-puter Science, pages 397{408, Elounda, June 1993. Springer-Verlag.[VW86] M.Y. Vardi and P. Wolper. An automata-theoretic approach to automaticprogram veri�cation. In Proceedings of the First Symposium on Logic inComputer Science, pages 322{331, Cambridge, June 1986.[Wes86] C. H. West. Protocol validation by random state exploration. In Proc. 6thIFIP WG 6.1 International Symposium on Protocol Speci�cation, Testing,and Veri�cation, pages 233{242. North-Holland, 1986.[WG93] P. Wolper and P. Godefroid. Partial-order methods for temporal veri�ca-tion (invited paper). In Proc. CONCUR'93, volume 715 of Lecture Notes inComputer Science, pages 233{246, Hildesheim, August 1993. Springer-Verlag.

www.manaraa.com

134 BIBLIOGRAPHY[Win86] G. Winskel. Event structures. In Petri Nets: Applications and Relationshipsto Other Models of Concurrency, Advances in Petri Nets 1986, Part II; Pro-ceedings of an Advanced Course, volume 255 of Lecture Notes in ComputerScience, pages 325{392. Springer-Verlag, 1986.[WL89] P. Wolper and V. Lovinfosse. Verifying properties of large sets of processeswith network invariants. In Automatic Veri�cation Methods for Finite StateSystems, Proc. Int. Workshop, Grenoble, volume 407 of Lecture Notes inComputer Science, pages 68{80, Grenoble, June 1989. Springer-Verlag.[Wol89] P. Wolper. On the relation of programs and computations to models of tem-poral logic. In B. Banieqbal, H. Barringer, and A. Pnueli, editors, Proc.Temporal Logic in Speci�cation, volume 398 of Lecture Notes in ComputerScience, pages 75{123. Springer-Verlag, 1989.[WVS83] P. Wolper, M.Y. Vardi, and A.P. Sistla. Reasoning about in�nite computationpaths. In Proc. 24th IEEE Symposium on Foundations of Computer Science,pages 185{194, Tucson, 1983.[YSSC93] T. Yoneda, A. Shibayama, B.-H. Schlinglo�, and E. Clarke. E�cient veri�-cation of parallel real-time systems. In Proc. 5th Conference on ComputerAided Veri�cation, volume 697 of Lecture Notes in Computer Science, pages321{332, Elounda, June 1993. Springer-Verlag.

